• 제목/요약/키워드: Axial velocity

검색결과 751건 처리시간 0.026초

RVM을 사용한 큰지름비 동축젯트의 비정상 수치해석 (Numerical Simulation of Unsteady Flow Field behind Widely-Spaced Co-axial Jet using Random Vortex Method)

  • 류명석;강성모;김용모
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.130-138
    • /
    • 1996
  • The transient incompressible flow behind the widely-spaced co-axial jet is numerically simulated using the random vortex method(RVM). This numerical approach is based on the Lagrangian approach for the vorticity formulation of the unsteady Navier-Stokes equations, utilizing vortex elements to account for the convection and diffusion processes. The effects of the mass flow rate of an annular air jet and a central fuel jet on the co-axial jet flow dynamics is investigated. To validate the present procedure, the numerical results are compared with the available experimental data the present procedure, the numerical results are compared with the available experimental data in terms of the centerline and off-centerline profiles of the mean axial velocity. Discrepancies between the RVM results and the measurements are discussed in detail.

  • PDF

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

Evolution of Tip Vortices Generated by Two Bladed Rotor in Hover at Early Wake Ages

  • Park, Byung-Ho;Han, Yong-Oun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.106-116
    • /
    • 2009
  • In order to investigate change of vortex structures and its evolving proceses, two dimensional LDV system was used for measurement of velocity vectors of tip vortex, and PIV system was also used for visualizations of tip vortex array for two bladed rotor, respectively. Experiments provided vortex locations, tangential and axial velocity components of tip vortex at six wake ages of 9.5, 10.5, 60.5, 99.5, 129.5, 169.5 and corresponded six wake ages shifted with 180 degrees per each. It was resulted that tip vortices generated by the first blade satisfy Landgrebe's model for their vortex locations even after they were accelerated by the second blade in downstream. Tangential velocity components of tip vortices follow Vatistas' n=2 model on both inside and outside regions of rotor slipstream without loss of vortex circulation. Axial velocity profiles revealed that there were small but significant perturbations just outside the primary vortex core which implies the second blade affects the wake substantially. It was also found that tip paths of each blade were not willing to be coincided intrinsically.

반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구 (A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY)

  • 배강열;김형범;정희택
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF

PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구 (Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques)

  • 백부근;김진;김경열;김기섭
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성 (Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향 (Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip)

  • 정홍철;최경민;김덕줄
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Recognition of Falls and Activities of Daily Living using Tri-axial Accelerometer and Bi-axial Gyroscope

  • Park, Geun-chul;Kim, Soo-Hong;Kim, Jae-hyung;Shin, Beum-joo;Jeon, Gye-rok
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.79-85
    • /
    • 2016
  • This paper proposes a threshold-based fall recognition algorithm to discriminate between falls and activities of daily living (ADL) using a tri-axial accelerometer and a bi-axial gyroscope sensor mounted on the upper sternum. The experiment was executed ten times according to the proposed experimental protocol. The output signals of the tri-axial accelerometer and the bi-axial gyroscope were measured during eight falls and eleven ADL action sequences. The threshold values of the signal vector magnitude (SVM_Acc), angular velocity (${\omega}_{res}$), and angular variation (${\theta}_{res}$) parameter were calculated using MATLAB. From the preliminary study, three thresholds (TH1, TH2, and TH3) were set so that the falls could be distinguished from ADL. When the parameter SVM_Acc is greater than 2.5 g (TH1), ${\omega}_{res}$ is greater than 1.75 rad/s (TH2), and ${\theta}_{res}$ is greater than 0.385 rad (TH3), these action sequences are recognized as falls. If at least one or more of these conditions is not satisfied, the sequence is classified as ADL.

3D AE source location considering the anisotropy of elastic wave velocity under triaxial compression

  • Cho Hyuk-Ki;Song Jae-Joon;Lee Chung-In
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.198-205
    • /
    • 2003
  • We considered the variation of elastic wave velocity due to the anisotropy of rock materials and stress level for acoustic emission (AE) source location in cylindrical rock specimens. Elastic wave velocity and AE were measured for Keochang granite and Yeosan marble under various axial stresses and confining pressures. Partition approximation method was suggested and it was compared with the difference approximation method and the least square method.

  • PDF