• Title/Summary/Keyword: Axial crushing

Search Result 75, Processing Time 0.026 seconds

A STUDY ON EXPERIMENTAL CHARACTERISTICS OF ENERGY ABSORPT10N CONTROL IN THIN-WALLED TUBES FOR THE USE OF VEHICULAR- STRUCTURE MEMBERS

  • Kim, S.-K.;Im, K.-H.;Hwang, C.-S.;Yang, I.-Y.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.137-145
    • /
    • 2002
  • Automobiles should be designed to meet the requirements and standards for the protections of passengers in a car accident. One of safety factors is an absorbing capacity in collision. Many vehicles have been designed based on the criterion of the absorbing capacity. Therefore a controller has been developed in order to control and increase the absorbing capacity of impact energy in automobile collision. The capacity of impact energy will be improved regardless of vehicular-structure members and shapes. An air-pressure horizontal impact tester for crushing has been built up for the evaluation of energy absorbing characteristics in collision. Influence of height, thickness and clearance in the controller have been considered to predict and control the energy absorbing capacity. Aluminum alloy (Al) tubes (30,39,44 m in inner dia. and 0.8, 1.0, 1.2 m in thickness) are tested by axial loading. The energy absorbing capacity of Al tubes have been estimated in cases of with-controller and without-controller. respectively based on height. thickness, clearance of an controller.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

Case Study of Seismic Evaluation of Low-Rise Masonry Buildings (저층 조적건물의 내진성능평가 사례 연구)

  • Eom, Tae Sung;Kim, Chan Ho;Lee, Seung Jae;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the seismic performance of a two-story unreinforced masonry (URM) building was assessed following the linear and nonlinear static procedures specified in the seismic evaluation guideline of existing buildings. First, the provisions to assess failure modes and shear strengths of URM walls and wall piers were reviewed. Then, a two-story URM building was assessed by the linear static procedure using m-factors. The results showed that the walls and wall piers with aspect ratios he // (i.e., effective height-to-length ratio) > 1.5 were unsafe due to rocking or toe crushing, whereas the walls with he // ≤ 1.5 and governed by bed-joint sliding mainly were safe. Axial stresses and shear forces acted upon individual masonry walls, and wall piers differed depending on whether the openings were modeled. The masonry building was reevaluated according to the nonlinear static procedure for a more refined assessment. Based on the linear and nonlinear assessment results, considerations of seismic evaluation for low-rise masonry buildings were given with a focus on the effects of openings.

Investigation of expanding-folding absorbers with functionally graded thickness under axial loading and optimization of crushing parameters

  • Chunwei, Zhang;Limeng, Zhu;Farayi, Musharavati;Afrasyab, Khan;Tamer A., Sebaey
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.775-796
    • /
    • 2022
  • In this study, a new type of energy absorbers with a functionally graded thickness is investigated, these type of absorbers absorb energy through expanding-folding processes. The expanding-folding absorbers are composed of two sections: a thin-walled aluminum matrix and a thin-walled steel mandrel. Previous studies have shown higher efficiency of the mentioned absorbers compared to the conventional ones. In this study, the effect of thickness which has been functionally-graded on the aluminum matrix (in which expansion occurs) was investigated. To this end, initial functions were considered for the matrix thickness, which was ascending/descending along the axis. The study was done experimentally and numerically. Comparing the experimental data with the numerical results showed high consistency between the numerical and experimental results. In the final section of this study, the best energy absorber functionally graded thickness was introduced by optimization using a third-order genetic algorithm. The optimization results showed that by choosing a minimum thickness of 1.6 mm and the exponential coefficient of 3.25, the most optimal condition can be obtained for descending thickness absorbers.

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns

  • Ji, Xiaodong;Zhang, Mingliang;Kang, Hongzhen;Qian, Jiaru;Hu, Hongsong
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.179-199
    • /
    • 2014
  • The steel tube-reinforced concrete (ST-RC) composite column is a novel type of composite column, consisting of a steel tube embedded in reinforced concrete. The objective of this paper is to investigate the effect of cumulative damage on the seismic behavior of ST-RC columns through experimental testing. Six large-scale ST-RC column specimens were subjected to high axial forces and cyclic lateral loading. The specimens included two groups, where Group I had a higher amount of transverse reinforcement than Group II. The test results indicate that all specimens failed in a flexural mode, characterized by buckling and yielding of longitudinal rebars, failure of transverse rebars, compressive crushing of concrete, and steel tube buckling at the base of the columns. The number of loading cycles was found to have minimal effect on the strength capacity of the specimens. The number of loading cycles had limited effect on the deformation capacity for the Group I specimens, while an obvious effect on the deformation capacity for the Group II specimens was observed. The Group I specimen showed significantly larger deformation and energy dissipation capacities than the corresponding Group II specimen, for the case where the lateral cyclic loads were repeated ten cycles at each drift level. The ultimate displacement of the Group I specimen was 25% larger than that of the Group II counterpart, and the cumulative energy dissipated by the former was 2.8 times that of the latter. Based on the test results, recommendations are made for the amount of transverse reinforcement required in seismic design of ST-RC columns for ensuring adequate deformation capacity.