• 제목/요약/키워드: Axial Mean Velocity

검색결과 149건 처리시간 0.031초

슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향 (Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

예인수조용 스테레오스코픽 입자영상유속계 시스템의 불확실성 해석 (Uncertainty Assessment of a Towed Underwater Stereoscopic PIV System)

  • 서정화;설동명;한범우;유극상;임태구;박성택;이신형
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.311-320
    • /
    • 2014
  • Test uncertainty of a towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was assessed in a towing tank. To estimate the systematic error and random error of mean velocity and turbulence properties measurement, velocity field of uniform flow was measured. Total uncertainty of the axial component of mean velocity was 1.45% of the uniform flow speed and total uncertainty of turbulence properties was 3.03%. Besides, variation of particle displacement was applied to identify the change of error distribution. In results for variation of particle displacement, the error rapidly increases with particle movement under one pixel. In addition, a nominal wake of a model ship was measured and compared with existing experimental data by five-hole Pitot tubes, Pitot-static tube, and hot wire anemometer. For mean velocity, small local vortex was identified with high spatial resolution of SPIV, but has serious disagreement in local maxima of turbulence properties due to limited sampling rate.

축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향 (Effects of the design variables and their constraints on the stage performance of an axial flow turbine)

  • 박호동;정명균
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2109-2124
    • /
    • 1991
  • 본 연구에서는 축류 터빈의 최적 설계 계산에서 사용 용도에 따라 달리 적용 될 수 있는 특정 제한조건, 즉 유량 계수, 압력비, 출력 그리고 하중 계수를 각각 고 려하였을 경우에 최대 효율을 가지기 위한 최적 조건을 계산하고자 한다. 또한 단일 설계 변수의 민감도(sensitivity) 뿐만 아니라, 단일 민감도에서 성능에 큰 영향을 주 는 설계 변수들에 대하여 복수 민감도를 나타내어 설계 변수 및 설계 제한 조건이 축 류 터빈의 성능에 미치는 영향을 조사하고자 한다.

Atomization Characteristics in Pneumatic Counterflowing Internal Mixing Nozzle

  • Lee, Sam-Goo;Rho, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1131-1142
    • /
    • 2000
  • In an effort to illustrate the global variation of SMD (Sauter mean diameter, or $D_{32}$) and AMD (Arithmetic mean diameter, or $D_{10}$) at five axial downstream locations (i. e., at Z=30, 50, 80, 120, and 170 mm) under the different experimental conditions, the radial coordinate is normalized by the spray half-width. Experimental data to analyze the atomization characteristics concerning with an internal mixing type have been obtained using a PDPA(Phase Doppler Particle Analyzer). The air injection pressure was varied from 40 kPa to 120 kPa. In this study, counterflowing internal mixing nozzles manufactured at an angle of $15^{\circ}$with axi-symmetric tangential-drilled four holes have been considered. By comparing the results, it is clearly possible to discern the effects of increasing air pressure, suggesting that the disintegration process is enhanced and finer spray droplets can be obtained under higher air assist. The variations in $D_{32}$ are attributed to the characteristic feature of internal mixing nozzle in which the droplets are preferentially ejected downward with strong axial momentum, and dispersed with the larger droplets which are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup by higher shear stresses at farther axial locations. The poor atomization around the centre close to the nozzle exit is attributed to the fact that the relatively lower rates of spherical particles are detected and these drops are not subject to instantaneous breakup in spite of the strong axial momentum. However, substantial increases in SMD from the central part toward the edge of the spray as they go farther downstream are mainly due to the fact that the relative velocity of droplet is too low to cause any subsequent disintegration.

  • PDF

고속 직접분사식 디젤엔진의 실린더내 유동특성에 관한 실험적 연구 (An Experimental Study of In-Cylindeer Flow Characteristics of a High Speed Direct Injection Diesel Engine)

  • 정경석
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.22-30
    • /
    • 1996
  • In-cylinder flow of a purpose-built small HSDI Hydra Diesel engine was investigated by laser Doppler velocimetry(LDV) during induction and compression processes. The flow was quantified in terms of ensemble-averaged axial and swirl velocities, normalized by the mean piston speed, at a plane located 12mm from the cylinder head and corresponding to the mid-plane of the diametrically-opposed quartz windows at an enigne speed of 1000rpm. The formation of toroidal vortices during the intake process and the evolution and decay of swirl motion during the compression process were observed. Turbulence at around TDC of compression became homogeneous and isotropic.

  • PDF

원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석 (Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct)

  • 최창용
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

Twin Spray Characteristics Between Two Impinging F-O-O-F Type Injectors

  • Kang, Shin-Jae;Lee, Eun-Sang;Kwon, Ki-Chul;Oh, Je-Ha;Yu, Myoung-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.732-742
    • /
    • 2002
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using PDPA. The droplet size and velocity were investigated at the mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at the intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller, while the axial velocity in the interaction area was slightly higher. An empirical correlation is obtained for the (D$\_$10/)$\_$D//(D$\_$10/)$\_$c/ value under the assumptions of two identical droplets and these with different size and velocity. The droplets with low Weber numbers below 40 have possibility to coalesce, while those over 40 tend to disintegrate after impingement in the interaction area.

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

터보펌프 인듀서의 유동특성에 관한 연구 (A Study on the Flow Characteristics of a Turbopump Inducer)

  • 구현철;홍순삼;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.41-46
    • /
    • 2002
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient $\varphi$=0.087 and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at $\varphi$=0.073.

  • PDF

터보펌프 인듀서의 출구 유동 및 성능 특성 (Characteristics of Exit Flow and Performance of a Turbopump Inducer)

  • 홍순삼;구현철;차봉준;김진한
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.38-44
    • /
    • 2003
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit, axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component, static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient ${\phi}=0.087$ and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at ${\phi}=0.073$.