• 제목/요약/키워드: Average torque

검색결과 261건 처리시간 0.031초

일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법 (Direct Torque Control Method of Induction Machine with Constant Average Torque)

  • 김정옥;조내수;최병태;김우현;임성운;권우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor

  • Nagarajan, V.S.;Kamaraj, V.;Balaji, M.;Arumugam, R.;Ganesh, N.;Rahul, R.;Lohit, M.
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.544-553
    • /
    • 2016
  • Torque ripple minimization without decrease in average torque is a vital attribute in the design of Synchronous Reluctance (SynRel) motor. As the design of SynRel motor is an arduous task, which encompasses many design variables, this work first analyses the significance of the effect of varying the geometrical parameters on average torque and torque ripple and then proposes an extensive optimization procedure to obtain configurations with improved average torque and minimized torque ripple. A hardware prototype is fabricated and tested. The Finite Element Analysis (FEA) software tool used for validating the test results is MagNet 7.6.0.8. Multi Objective Particle Swarm Optimization (MOPSO) is used to determine the various designs meeting the requirements of reduced torque ripple and improved torque performance. The results indicate the efficacy of the proposed methodology and substantiate the utilization of MOPSO as a significant tool for solving design problems related to SynRel motor.

영구자석 전동기의 부하각에 따른 토크 및 토크리플 분석을 위한 해석법 연구 (A Study on Analysis Method of Torque and Torque Ripple according to Load Angle for Permanent Magnet Motor)

  • 김기찬;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.621_622
    • /
    • 2009
  • This paper presents an efficient calculation method for torque and torque ripple of a permanent magnet synchronous motor by using superposing method of load angle torque curves from finite element method. The load angle range having minimum torque ripple as well as average torque according to load angle can be induced by proposed method. We selected a permanent magnet assisted synchronous reluctance motor (PMa-SynRM) as a study model because of its high torque ripple. We performed experiment of torque ripple and average torque according to load angle for the verification of proposed method in the paper.

Multi-Object Optimization of the Switched Reluctance Motor

  • Choi, Jae-Hak;Kim, Sol;Kim, Yong-Su;Lee, Sang-Don;Lee, Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권4호
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, multi-object optimization based on a progressive quadratic response surface method (PQRSM) and a time stepping finite element method (FEM) is proposed. The new PQRSM and FEM are able to decide optimal geometric and electric variables of the switched reluctance motor (SRM) with two objective functions: torque ripple minimization and average torque maximization. The result of the optimum design for SRM demonstrates improved performance of the motor and enhanced relationship between torque ripple and average torque.

영구자석 기동장치가 회전자 돌극형 단상 SRM의 평균 토오크에 미치는 영향 (The Influence of The Starting Permanent Magnet on Average Torque of The Salient Pole Rotor Type Single Phase SRM)

  • 김준호;이은웅;이충원;서종민;김견묵
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1030-1032
    • /
    • 2003
  • Single phase SRM(switched reluctance motor) can not be start by itself because positive torque is generated in limited section. Therefore single phase SRM need starting device which is place the rotor in positive torque section when motor is begun to start. The prototype of salient pole rotor type single phase SRM, fabricated in previous research, has permanent magnet starting device. It is installed in bottom of the rotor for starting by itself. But, it is affected the motor when driving and cause the decrease of torque and speed. On this paper, average torque of the prototype was measured according to installation of the starting device or not. And influence of the staring device on average torque was confirmed by comparison of the results.

  • PDF

축방향 자속형 영구자석 BLDC 전동기의 코깅 토크 저감에 관한 연구 (A Study on the Cogging Torque Reduction in a Novel Axial Flux Permanent Magnet BLDC Motor)

  • 조원영;이인재;구대현;전연도;조윤현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권9호
    • /
    • pp.437-442
    • /
    • 2006
  • Cogging torque, the primary ripple component in the torque generated by permanent magnet (PM) motors, is due to the slotting on the stator or rotor. This article shows the reduction of cogging torque in a novel axial flux permanent magnet (AFPM) motor through the various design schemes. 3D finite element method is used for the exact magnetic field analysis. The effects of slot shapes and skewing of slot on the cogging torque and the average torque have been investigated in detail.

스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화 (Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor)

  • 최재학;김솔;이갑재;이주;홍경진;최동훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권3호
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

Sensitivity Analysis of Geometrical Parameters of a Switched Reluctance Motor with Modified Pole Shapes

  • Balaji, M.;Ramkumar, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.136-142
    • /
    • 2014
  • A major problem in Switched Reluctance Motor (SRM) is torque ripple, which causes undesirable acoustic noise and vibration. This work focuses on reducing the undesirable torque ripple in SRM by modifying stator and rotor geometry. This paper presents a comparative study on torque ripple minimization in SRM with modified pole shapes such as stator pole taper, stator pole face with non-uniform air gap and pole shoe attached to rotor pole. Further this paper presents a detailed sensitivity analysis of the effect of different geometrical parameters that alter the pole face shapes on the performance of SRM. The analysis is performed using finite-element method considering average torque and torque ripple as performance parameters. Based on the analysis, a design combining stator pole taper with non-uniform air gap is proposed to improve the torque characteristics of SRM. The dynamic characteristics of the proposed design are simulated and the results show satisfactory reduction in torque ripple.

이상유도전동기의 립상제어시 발생토오크에 대한 해석 (Analysis of The Generating Torque Characteristics of 2-Phase lnduction Motor in Phase Control.)

  • 원종수;장도현
    • 대한전기학회논문지
    • /
    • 제37권5호
    • /
    • pp.289-297
    • /
    • 1988
  • In this paper, the analysis of a generating torque characteristics of 2-phase induction motor driven with the phase control method is presented. The generating torque equations which represent average torque and pulsating torque are derived from the elementary machine model. The calculating equations which can get the values of average torque and pulsating torque is expressed by the parameters of the equivalent circuit of 2-phase induction motor. According to the calculating equations, these performance characteristics are investigated under various conditions. Finally, a strategy to eliminate non-linearity and pulsating torque generated in driving 2-phase induction motor with the phase control method is presented.

  • PDF

Reduction of Torque Ripple in an Axial Flux Generator Using Arc Shaped Trapezoidal Magnets in an Asymmetric Overhang Configuration

  • Ikram, Junaid;Khan, Nasrullah;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.577-585
    • /
    • 2016
  • In this paper, model of the axial-flux permanent magnet synchronous generator (AFPMSG) having arc-shaped trapezoidal permanent magnets (PM) is presented. The proposed model reduces the cogging torque and torque ripple, at the expense of lowering the average output torque. Optimization of the proposed model is performed by considering the asymmetric overhang configuration of the PMs, as to make the output torque of the proposed model competitive with the conventional model. The time stepped 3D finite element analysis (FEA) is performed for the comparative analysis. It is demonstrated that the torque ripple of the optimized model is highly reduced as well as average output torque is increased.