Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.4.577

Reduction of Torque Ripple in an Axial Flux Generator Using Arc Shaped Trapezoidal Magnets in an Asymmetric Overhang Configuration  

Ikram, Junaid (COMSATS Institute of Information Technology)
Khan, Nasrullah (COMSATS Institute of Information Technology)
Khaliq, Salman (Hanyang University)
Kwon, Byung-il (Hanyang University)
Publication Information
Abstract
In this paper, model of the axial-flux permanent magnet synchronous generator (AFPMSG) having arc-shaped trapezoidal permanent magnets (PM) is presented. The proposed model reduces the cogging torque and torque ripple, at the expense of lowering the average output torque. Optimization of the proposed model is performed by considering the asymmetric overhang configuration of the PMs, as to make the output torque of the proposed model competitive with the conventional model. The time stepped 3D finite element analysis (FEA) is performed for the comparative analysis. It is demonstrated that the torque ripple of the optimized model is highly reduced as well as average output torque is increased.
Keywords
axial-flux generator; asymmetric magnet overhang; torque ripple; arc-shaped magnet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. C. Kim, D. H. Koo, and J. Lee, IEEE Trans. Magn. 43, 6 (2007).   DOI
2 D. K. Woo, D. K. Lim, H. K. Yeo, J. S. Ro, and H. K. Jung, IEEE Trans. Magn. 49, 8 (2013).
3 J. R. Hendershot and T. J. E. Miller, Design of Brushless Permanent-Magnet Motors, Magna Physics Publishing and Oxford University Press, (1994) pp. 92-93, pp. 681-722.
4 K. Y. Hwang, L. Hai, S. H. Rhyu, and B. I. Kwon, IEEE Trans. Magn. 48, 5 (2012).
5 M. M. Koo, J. Y. Choi, Y. S. Park, and S. M. Jang, IEEE Trans. Magn. 50, 11 (2014).   DOI
6 WonYoung Jo, YunHyun Cho, YonDo Chun, and Dae-Hyun Koo, 5th international power electronics and motion control conference (2006).
7 Y. Chen, P. Pillay, and A. Khan, IEEE Trans. Ind. Appl. 41, 6 (2005).
8 N. Goudarzi and W. D. Zhu, Int. J. Dynam. Control (2013).
9 H. Li and Z. Chen, IET Renewable Power Generation 2, 2 (2008).
10 Asko Parviainen, Ph.D. Thesis, University of Technology Lappeenranta, Finland (2005).
11 Chang-Chou Hwang, Ping-Lun Li, Frazier C. Chuang, Cheng-Tsung Liu, and Kuo-Hua Huang, IEEE Trans. Magn. 45, 3 (2009).   DOI
12 Solmaz Kahourzade, Amin Mahmoudi, and Hew Wooi Ping, Can. J. Electron. Comput. Eng. 37, 1 (2014).   DOI
13 T. F. Chan and L. L. Lai, IEEE Trans. Energy Convers. 22, 1 (2007).   DOI
14 Metin Aydin, Ph.D. Thesis, University of Wisconsin-Madison (2004).
15 W. Fei and P. C. K. Luk, IEEE Trans. Ind. Electronics 59, 6 (2011).
16 W. Fei, P. C. K. Luk, and K. Jinupun, IET Electric Power Applications 4, 9 (2010).
17 Yong-min you, hai Lin, and Byung-il Kwon, JEET 7, 1 (2012).
18 Marten J. Kamper, Rong Jie wang, and Francois G. Rossouw, IEEE Trans. Ind. Appl. 44, 5 (2008).
19 Bing Xia, Jian-Xin Shen, Patrick Chi-Kwong Luk, and Weizhong Fei, IEEE Trans. Ind. Elect. 62, 2 (2015).   DOI
20 Jacek F. Gieras, Rong-Jie Wang, and Maarten J. Kamper, Axial Flux Permanent Magnet Brushless Machines. Kluwer Academic Publishers, Netherlands, pp. 45-60, pp. 92-119.
21 Fabio Giulii Capponi and Giulio De Donato, IEEE Trans. Ind. Appl. 48, 6 (2012).
22 Tareq S. El-Hasan and Patrick C. K. Luk, IEEE Trans. Magn. 39, 5 (2003).
23 Lukasz Drzikowski and Wlodzimierz Koczara, Journal of Electrical Engineering 10, 3 (2010).