• Title/Summary/Keyword: Average queue length

Search Result 64, Processing Time 0.028 seconds

Queue Management Algorithm for Congestion Avoidance in Mixed-Traffic Network (혼합트래픽 네트워크에서 혼잡회피를 위한 큐 관리 알고리즘)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.81-94
    • /
    • 2012
  • This paper suggests PARED algorithm, a modified RED algorithm, that actively reacts to dynamic changes in network to apply packet drop probability flexibly. The main idea of PARED algorithm is that it compares the target queue length to the average queue length which is the criterion of changes in packet drop probability and feeds the gap into packet drop probability. That is, when the difference between the average queue length and the target queue length is great, it reflects as much as the difference in packet drop probability, and reflects little when the difference is little. By doing so, packet drop probability could be actively controled and effectively dealt with in the network traffic situation. To evaluate the performance of the suggested algorithm, we conducted simulations by changing network traffic into a dynamic stat. At the experiments, the suggested algorithm was compared to the existing RED one and then to ARED one that provided the basic idea for this algorithm. The results proved that the suggested PARED algorithm is superior to the existing algorithms.

Proposal of Approximation Analysis Method for GI/G/1 Queueing System

  • Kong, Fangfang;Nakase, Ippei;Arizono, Ikuo;Takemoto, Yasuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • There have been some approximation analysis methods for a GI/G/1 queueing system. As one of them, an approximation technique for the steady-state probability in the GI/G/1 queueing system based on the iteration numerical calculation has been proposed. As another one, an approximation formula of the average queue length in the GI/G/1 queueing system by using the diffusion approximation or the heuristics extended diffusion approximation has been developed. In this article, an approximation technique in order to analyze the GI/G/1 queueing system is considered and then the formulae of both the steady-state probability and the average queue length in the GI/G/1 queueing system are proposed. Through some numerical examples by the proposed technique, the existing approximation methods, and the Monte Carlo simulation, the effectiveness of the proposed approximation technique is verified.

A Study on an Adaptive AQM Using Queue Length Variation

  • Seol, Jeong-Hwan;Lee, Ki-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The AQM (Active Queue Management) starts dropping packets earlier to notify traffic sources about the incipient stage of congestion. The AQM improves fairness between response flow (like TCP) and non-response flow (like UDP), and it can provide high throughput and link efficiency. In this paper, we suggest the QVARED (Queue Variation Adaptive RED) algorithm to respond to bursty traffic more actively. It is possible to provide more smoothness of average queue length and the maximum packet drop probability compared to RED and ARED (Adaptive RED). Therefore, it is highly adaptable to new congestion condition. Our simulation results show that the drop rate of QVARED is decreased by 80% and 40% compare to those of RED and ARED, respectively. This results in shorter end-to-end delay by decreasing the number of retransmitted packets. Also, the QVARED reduces a bias effect over 18% than that of drop-tail method; therefore packets are transmitted stably in the bursty traffic condition.

A Virtual-Queue based Backpressure Scheduling Algorithm for Heterogeneous Multi-Hop Wireless Networks

  • Jiao, Zhenzhen;Zhang, Baoxian;Zheng, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4856-4871
    • /
    • 2015
  • Backpressure based scheduling has been considered as a promising technique for improving the throughput of a wide range of communication networks. However, this scheduling technique has not been well studied for heterogeneous wireless networks. In this paper, we propose a virtual-queue based backpressure scheduling (VQB) algorithm for heterogeneous multi-hop wireless networks. The VQB algorithm introduces a simple virtual queue for each flow at a node for backpressure scheduling, whose length depends on the cache size of the node. When calculating flow weights and making scheduling decisions, the length of a virtual queue is used instead of the length of a real queue. We theoretically prove that VQB is throughput-optimal. Simulation results show that the VQB algorithm significantly outperforms a classical backpressure scheduling algorithm in heterogeneous multi-hop wireless networks in terms of the packet delivery ratio, packet delivery time, and average sum of the queue lengths of all nodes per timeslot.

A Study on the Modified Queue Management Scheme for Congestion Avoidance (폭주회피를 위한 개선된 큐 관리 기법에 관한 연구)

  • 양진영;이팔진;김종화
    • Journal of Internet Computing and Services
    • /
    • v.2 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • In this paper, a Modified RED algorithm for congestion avoidance in IP networks is presented. The RED detects incipient congestion by computing the average queue size. By notifying only a randomly selected fraction of connection, it causes to the global synchronization or fairness problem, And also, the network characteristics need to be known in order to find th optimum average queue length. When the average queue size exceeds a minimum threshold, a modified RED algorithm drops packets based on the state of each connection. Performance is improved because of keeping the average queue size low while allowing occasional bursts of packets in the queue, we compare performance of modified RED with RED and Drop Tail in terms of goodput, network utilization and fairness.

  • PDF

The Development of Traffic Queue Length Estimation Algorithm Using the Occupancy Rates (점유율을 이용한 대기행렬길이 추정 알고리즘 개발)

  • Kang Jihoon;Oh Young-Tae;Kang Jeung-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.13-22
    • /
    • 2005
  • The purpose of this research is how to estimate the traffic queue length in the signal intersection accurately. The current traffic queue length algorithm in COSMOS has been using the congestion diagram which comes from the speed of an average separated vehicle - using average vehicle length and the occupancy time from loop detectors. So some errors were occurred by the speed estimation method using average vehicle lengths. And Operators had been difficult to optimize some variables for measuring the traffic queue length estimation algorithm in COSMOS. Therefore the traffic queue length estimation algorithm on the basis of the relation between distances and occupancy rates from loop detectors was developed in this thesis. This thesis had the advantage of using occupancy rates which came out from loop detectors easily and no need to optimize some variables for the established algorithm in COSMOS. And the results of testing this algorithm in some sites which had installed COSMOS system showed better results than COSMOS system's results. But it was noted that further studies which carry it out in various sites and under various cases are necessary for applying to actual intersections.

  • PDF

A MIrcroscopic Application of the Little's Formula (Little's 법칙의 미시적 활용 사례)

  • Yoon, Bong-K.;Kim, Nam-K.;Chae, Kyung-C.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.125-129
    • /
    • 1999
  • The Little's formula, $L={\lambda}W$, expresses a fundamental principle of queueing theory: Under very general conditions, the average queue length is equal to the product of the arrival rate and the average waiting time. This useful formula is now well known and frequently applied. In this paper, we demonstrate that the Little's formula has much more power than was previously realized when it is properly decomposed into what we call the microscopic Little's formula. We use the M/G/1 queue with server vacations as an example model to which we apply the microscopic Little's formula. As a result, we obtain a transform-free expression for the queue length distribution. Also, we briefly summarize some previous efforts in the literature to increase the power of the Little's formula.

  • PDF

The Study on Effects Caused by the Initial Queue to the Total Delay Estimation in Analyzing Signalized Intersection (신호교차로 분석시 초기대기행렬이 총지체도에 미치는 영향에 관한 연구)

  • Park, Soon-Pyo;Kim, Ki-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.563-570
    • /
    • 2009
  • This study is aimed to analyze the overall effects of the additional delay caused by the vehicle in front of the queue, at the signal, to the total delay estimation. To estimate the average vehicle delay at the signalized intersection, as survey of the queue length at the intersection and traffic counts were conducted. As a result of this analysis, all of the three delay estimation methods turned out to be similar in that the estimation of the average delay for the test vehicle was less than 60 sec/vehicle. However, the average delay time for the vehicle in front of the queue only, was estimated at 60-70 sec/vehicle which is similar to the average delay of the test vehicle.

Analysis of Finite Tandem Queues in Computer Communication Network (컴퓨터 통신망의 유한 길이 탄뎀 큐에 대한 해석)

  • 조진웅;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.545-553
    • /
    • 1987
  • An approximation algorithm has been obtained to analyze the network of single server tandem queues with a finite length. In the queueing network with a finite queue length, the blocking which is mutually dependent, occure due to the limitation of the queue length. Thus, it is difficults to analyze such a queueing network. In this paper each queue has been regarded as the independent M/M/1/K system to analyze the queueing network with the blocking, which is based on the assumption that an arrival rate to the present station is increased by the blocking of the following stations. The performance measures, such as state probability, average queue length and tha waiting time, can be easily obtained using the proposed algorithm. In order to justify this approximation algorithm, comparison of the results of this algorithm with those of state transition simultaneous equations has been made an verified with computer simulation.

  • PDF

Analysis of the M/Gb/1 Queue by the Arrival Time Approach (도착시점방법에 의한 M/Gb/1 대기행렬의 분석)

  • Chae, Kyung-Chul;Chang, Seok-Ho;Lee, Ho-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • We analyze bulk service $M/G^{b}/1$ queues using the arrival time approach of Chae et al. (2001). As a result, the decomposition property of the M/G/1 queue with generalized vacations is extended to the $M/G^{b}/1$ queue in which the batch size is exactly a constant b. We also demonstrate that the arrival time approach is useful for relating the time-average queue length PGF to that of the departure time, both for the $M/G^{b}/1$queue in which the batch size is as big as possible but up to the maximum of constant b. The case that the batch size is a random variable is also briefly mentioned.