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Abstract. There have been some approximation analysis methods for a GI/G/1 queueing system. As one of them, 
an approximation technique for the steady-state probability in the GI/G/1 queueing system based on the iteration 
numerical calculation has been proposed. As another one, an approximation formula of the average queue length 
in the GI/G/1 queueing system by using the diffusion approximation or the heuristics extended diffusion ap-
proximation has been developed. In this article, an approximation technique in order to analyze the GI/G/1 
queueing system is considered and then the formulae of both the steady-state probability and the average queue 
length in the GI/G/1 queueing system are proposed. Through some numerical examples by the proposed te-
chnique, the existing approximation methods, and the Monte Carlo simulation, the effectiveness of the proposed 
approximation technique is verified. 
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1.  INTRODUCTION 

A GI/G/1 queueing system has been known as one 
of the most common and flexible queueing systems. 
Then, it is interesting subjects to develop a practical 
analysis method. However, the development of the prac-
tical analysis method is not easy because the finite in-
formation about interarrival and service time distribu-
tions in the GI/G/1 queueing system is assumed. There-
fore, some approximation analysis methods for the 
GI/G/1 queueing system have been proposed (See Shan-
thikumar and Buzacott (1980)). 

For instance, Heyman (1975) and Kobayashi (1974) 

have developed an approximation formula of the aver-
age queue length by using the diffusion approximation 
based on the first two moments of both of arrivals and 
service times. Then, using numerical experiments, Kra-
mer and Lagenbach-Belz (1976) have heuristically ex-
tended Heyman’s (1975) approximation formula, and 
further the equivalent approximation for the average 
queue length in the GI/G/1 queueing system have been 
obtained. Then, Shanthikumar and Buzacott (1980) have 
indicated that the approximation formula of the average 
queue length proposed by Kramer and Lagenbach-Belz 
(1976) have the superior accuracy. In addition, Kobaya-
shi (1974) has proposed the method to obtain the ap-
proximate distribution of the number of customers in the 
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system based on the approximation for the average queue 
length.  

Moreover, Ott (1987) has investigated the appro-
ximation technique based on the iterative numerical cal-
culation for obtaining the waiting time distribution of 
the APH/APH/1 queueing system. In addition, an appro-
ximation technique based on the iterative numerical cal-
culation for obtaining the steady-state probability in the 
Ph/Ph/c queueing system has been proposed by Seelen 
(1986). Further, Takahashi and Takami (1976) have in-
vestigated the approximation technique based on the 
iterative numerical calculation for obtaining the steady-
state probability in the GI/G/c queueing system. How-
ever, Ott (1987)，Seelen (1986), and Takahashi and Ta-
kami (1976) have not obtained the explicit expressions 
for the average queue length and the steady-state prob-
ability. 

In this article, we consider the approximation tech-
nique in order to analyze the GI/G/1 queueing system 
which is different from the above existing methods such 
as diffusion approximation, heuristics extended diffu-
sion approximation and iterative numerical calculation. 
Then, the approximation technique for obtaining explic-
itly the average queue length and the steady-state prob-
ability distribution of the number of customers in the 
GI/G/1 queueing system are proposed. Through some 
numerical examples by the proposed technique, the ex-
isting approximation methods and the Monte Carlo 
simulation, the effectiveness of the proposed approxima-
tion analysis technique is verified. 

2.  NOTATIONS 

In this section, we define and explain some symbols 
in this article. 

 
FE : Mean of distribution F, 

FV : Variance of distribution F, 
FC : Coefficient of variation of distribution F, 

Erl( , )α β : Erlang distribution with phase α and mean 
1/ β , 

Weib( , )ξ θ : Weibull distribution with scale parameter ξ  
and shape parameterθ  

( )Log ,η δ : Log-normal distribution with location pa-
rameter η  and scale parameterδ  

( ); ,h t α β : Probability density function of Erl( , )α β  
n : Number of customers in queueing system, 

np : Steady-state probability in GI/G/1 queueing system, 
EL : Average queue length in GI/G/1 queueing system. 

3.  APPROXIMATION TECHNIQUE BY THE 
MIXED-ERLANG DISTRIBUTION FOR 
THE GENERAL DISTRIBUTION 

In this section, we explain the approximation tech-

nique, where the mixture of two Erlang distributions of 
phase 1k − and phase k is substituted for the general dis-
tribution with known mean and variance. 

Tijms (1994) has proposed an approximation tech-
nique using first two moments, where the following pro-
bability density function of the mixed Erlang distribu-
tion with phase 1k −  and phase k  is substituted for the 
general distribution G with mean GE  and variance GV : 
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In this approximation, the general distribution G is given 
the mixture distribution of the Erlang distribution with 
phase 1k − , mean ( 1) /k ν−  and the Erlang distribution 
with phase k , mean /k ν . 

However, we don't employ the above approxima-
tion presented in Equations (1)-(4), and propose another 
approximation in this article. The reason why we don't 
employ the approximation by Equations (1)-(4) is ad-
dressed in Section 4. 

Instead of the approximation in Equations (1)-(4), 
we propose the following approximation. At first, the 
probability density function of Erl( , )α β  is represented 
as 
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Under the notations mentioned in the previous sec-
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tion, we consider the approximation distribution with 
the following probability density function for the gen-
eral distribution G instead of Equation (1): 

 
( )( ) (1 ) ; 1,h t p h t α β= − −  

( ); , , ( 0).ph t tα β+ ≥            (5) 
 

The Mixed Erlang distribution with the probability den-
sity function of Equation (5) is denoted by Mixed-Erl  
( , , )pα β . Then, the mean Mixed-Erl( , , )pE α β  and variance 

Mixed-Erl( , , )pV α β  in the Mixed-Erl( , , )pα β  are derived as 
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Notice that the approximation of Equation (5) is 

different from the approximation of Equation (1) greatly 
at the point that the two Erlang distributions in the ap-
proximation of Equation (5) have the same mean, i.e. 

Erl( 1, ) Erl( , ) GE E Eα β α β− = = . The approximation parameter 
β  is provided as 

 

G

1
E

β =     (6) 

 
Further, based on the first two moments, we obtain the 
approximation parameter α  from the relation: 
 

( ) ( ) ( )2 22
Erl( , ) G Erl( 1, ) .C C Cα β α β−≤ ≤  

 
This inequality leads to the following result for parame-
ter α  which is the same as Equation (2): 
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Finally, by letting the variance of the Mixed-Erlang dis-
tribution correspond to the variance of the general dis-
tribution G, the mixture radio p  is provided as follows: 
 

{ }2
G( 1) ( ) 1 .p Cα α= − −    (8) 

 
Suppose that the mean and variance of the interar-

rival time distribution and the service time distribution 
are described by AE , AV , SE , and SV , respectively. Then, 
we have the coefficients of variation AC  and SC  in 
the interarrival and service time distributions, respec-
tively. 

In the approximation technique of Equations (5)-
(8), we consider the interarrival time distribution as the 

mixed-Erlang distribution with the approximation pa-
rameters ( , , )rλ , where we have 

 
1 ,

AE
λ =     (9) 

21 1 ,
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( )( )21 1Ar C= − − .   (11) 

 
Similarly, the service time distribution is specified 

as the Mixed-Erl( , , )k qμ with the following approxima-
tion parameters ( , , )k qμ : 
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Remark that from 1≥  and 1k ≥ , the squared coeffi-
cients of variation 2

AC  and 2
SC  should satisfy the fol-

lowing relations: 2 1AC ≤  and 2 1SC ≤ . We consider only 
the situation where the coefficient of variation is equal 
to or less than 1. This case is useful in practical use. 

4.  PROPOSAL APPROXIMATION ANALY-
SIS FOR GI/G/1 QUEUEING SYSTEM 
BASED ON ( , ) / ( , ) /1kλ μErl Erl  QUEUE-
ING SYSTEM ANALYSIS 

In the previous section, we have explained the ap-
proximation technique for the interarrival time distribu-
tion and the service time distribution based on the Mi-
xed-Erlang distribution. Then, we substitute the mixture 
of analysis of four Erlang interarrival/Erlang service /1 
queueing systems presented in Table 1 for the analysis 
of the GI/G/1 queueing system. 

 
 

Table 1. Queueing systems and mixture ratio. 

Queueing Systems Mixture Ratio 

Erl( 1, ) / Erl( 1, ) /1kλ μ− −  rq  
Erl( 1, ) / Erl( , ) /1kλ μ−  (1 )r q−  
Erl( , ) / Erl( 1, ) /1kλ μ−  (1 )r q−  

Erl( , ) / Erl( , ) /1kλ μ  (1 )(1 )r q− −  
 
Further, we can analyze the Erl( , ) / Erl( , ) /1kλ μ  

queueing system by adopting the following method pre-
sented by Kawamura (1980). Denote the present state in 
the Erl( , ) / Erl( , ) /1kλ μ queueing system by ( , , )s m n , where 
s is the progress of the phase in the interarrival time 
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distribution Erl( , )λ , m is the progress of the phase in 
the service time distribution Erl( , )k μ , and n is the num-
ber of customers in the Erl( , ) / Erl( , ) /1kλ μ  queueing 
system. Remark that if there is no customers in the 
queueing system, the state is denoted by ( ,*,0)s . And, 
let ( , )

,*,0
k

sp  and ( , )
, ,

k
s m np  be the steady-state probabilities of 

the states ( ,*,0)s  and ( , , )s m n . Define the following 
notations: 

 

, / ( 1).
k
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μ
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Then, consider the variables u , v  and w  which 

satisfy the relations: 
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In this case, the equation (16) has k+  different 

roots, including the root 1u = , and among them exactly 
k roots have the absolute values less than 1. 

Let 1 2, , , ku u u be the roots of equation (16) in-
side the unit circle and let 1 2, , ,k k ku u u+ + +  be the 
others and 1ku + = . Then, it can be easily seen that 

1 2 1, , ,k k ku u u+ + + −  can not have the absolute value 1. 
Therefore, we get in succession: 
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Then, we can obtain the steady-state probabilities ( , )

,*,
k
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and ( , )
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We have particularly 
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Therefore, it can be easily verified that 
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where ( , )

0
kp  means the steady-state probability that 

there is no customer in the Erl( , ) / Erl( , ) /1kλ μ  queue-
ing system. Further, the average queue length ( , )k

EL  in 
the Erl( , ) / Erl( , ) /1kλ μ  queueing system is derived as 
follows: 
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where  
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As mentioned the above, we consider the mixture 

of analysis of four Erlang interarrival/Erlang service/1 
queueing systems presented in Table 1 to be the ap-
proximation of analysis of the GI/G/1 queueing system. 
Therefore, we can get the steady-state probability np  
and the average queue length EL  as follows: 

 
0 1 ,p ρ= −             (21) 

1 1 1
( 1, 1) ( 1, )
, , , ,

1 1 1 1
(1 )

k k
k k

n s m n s m n
m s m s

p rq p r q p
− − −

− − −

= = = =

= + −∑∑ ∑∑  

1
( , 1)
, ,

1 1
(1 )

k
k

s m n
m s

r q p
−

−

= =

+ − ∑∑
 
( , )
, ,

1 1
(1 )(1 ) ,

k
k

s m n
m s

r q p
= =

+ − − ∑∑            (22) 

 
and 
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( , 1) ( , )(1 ) (1 )(1 ) .k k
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In the approximation analysis technique proposed 

in this section, the traffic intensities for respective Er-
lang interarrival/Erlang service/1 queueing systems in 
Table 1 have to be less than 1. If the traffic intensity for 
the original GI/G/1 queueing system is less than 1, we 
can always apply the approximation analysis technique 
proposed in this section because of the relation of 

Erl( 1, ) Erl( , ) GE E Eα β α β− = =  by using the approximation of 
Equations (5)-(8). However, in the approximation pre-
sented of Equations (1)-(4), the traffic intensities for 
respective Erlang interarrival/Erlang service/1 queueing 
systems in Table 1 aren’t always less than 1. It has been 
known that for any queueing systems with the traffic 
intensity exceeding 1, we can never obtain the steady-
state in the queueing system. This is the reason why we 
don’t employ the approximation technique of Equations 
(1)-(4). 

5.  NUMERICAL VERIFICATION 

In this section, through some numerical results, we 
verify the validity of the proposed approximation analy-
sis technique for the GI/G/1 queueing system. For com-
parison, we consider some existing approximation me-
thods and the Monte Carlo simulation to obtain the 
steady-state probability and the average queue length. At 
first, we have to describe exactly the interarrival time 
distribution and the service time distribution in order to 

implement the Monte Carlo simulation. As an example, 
assume the interarrival time distribution to be the Wei-
bull distribution Weib( , )ξ θ  with the following probabil-
ity density function 

Weib( , ) ( )f tξ θ
: 
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where let ξ  and θ  denote the scale parameter and the 
shape parameter in the Weibull distribution, respectively. 
In this case, the mean Weib( , )E ξ θ  and variance Weib( , )V ξ θ  
in the Weibull distribution are given as 
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Moreover, the service time distribution is assumed 

to be the log-normal distribution ( )Log ,η δ with the 
probability density function Log ( )f t : 
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where η  and δ  represent the parameters about loca-
tion and scale. Further, we have the mean ( )Log ,E η δ  and 
variance ( )Log ,V η δ  in the log-normal distribution as 
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Therefore, on applying the proposed approximation 

analysis technique, we can interpret the means, vari-
ances and coefficients of variation in the interarrival 
time distribution and service time distribution as follows: 
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Furthermore, for another comparison, the approxi-

mation formula of the average queue length proposed by 
Kramer and Lagenbach-Belz (1976) should be employ-
yed, because it has the superior accuracy. In addition, 
when the approximate queue length are obtained by us-
ing the approximation formula proposed by Kramer and 
Lagenbach-Belz, we can apply the derivation for the ste-
ady-state probability using diffusion approximation with 
a reflecting boundary (Kobayashi 1974). 
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Then, the approximation formula for the average 
queue length proposed by Kramer and Lagenbach-Belz 
(1976) is indicated as 
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Further, by substituting the result KL  into the ap-

proximation of the steady-state probability presented by 
Kobayashi (1974), we have 
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Table 2 shows the approximation parameters ( , , )k qμ  

in the case that the Log-normal distribution is substi-
tuted for the general service time distribution. Similarly, 
the approximation parameters ( , , )rλ  in the Weibull 
distribution for the general interarrival time distribution 
are shown in Table 3. Further, Table 4 illustrates the 
average queue length based on the Monte Carlo simula-

tion, the proposed analysis technique and the method of 
Kramer and Lagenbach-Belz (1976) under the data set 
in Tables 2 and 3. Further, in Table 5, the steady-state 
probabilities by the Monte Carlo simulation, the pro-
posed technique and the approximation by Kobayashi 
(1974) are shown under the same data set. From Table 4, 
we find that the proposed analysis technique has the 
more effectiveness than the approximation of Kramer 
and Lagenbach-Belz. And, it is obvious that the steady-
state probability based on the proposed technique has 
enough accuracy through Table 5 in the practical usage. 

 
Table 4. The comparisons of the average queue length 

ρ  SL  EL  KL  
0.1 0.100 0.100 0.100 
0.2 0.203 0.202 0.201 
0.3 0.313 0.308 0.306 
0.4 0.435 0.426 0.422 
0.5 0.578 0.566 0.560 
0.6 0.764 0.746 0.739 
0.7 1.033 1.009 1.002 
0.8 1.514 1.486 1.479 
0.9 2.865 2.818 2.812 

6. CONCLUSION 

In this article, the interarrival time and the service 
time of GI/G/1 queueing system are given as the Mixed-
Erlang distribution, respectively. Then, we have pro-
posed the approximation technique for the average que-

Table 2. The approximation parameters ( , , )k qμ  for the Lognormal distribution as the service time distribution. 

η  δ  SE  SV  
21/ SC  k  μ  q  

-2.428 0.5 0.1 0.00284 3.521 4 10.0 0.592 
 

Table 3. The approximation parameters ( , , )pλ  for the Weibull distribution as the interarrival time distribution. 

ξ  θ  AE  AV  
21/ AC   λ  r  

1.3063 2.2 1.000 0.23024 4.34 5 1.0 0.395 

0.2843 2.2 0.500 0.05756 4.34 5 2.0 0.395 

0.1165 2.2 0.333 0.02558 4.34 5 3.0 0.395 

0.0619 2.2 0.250 0.01439 4.34 5 4.0 0.395 

0.0379 2.2 0.200 0.00921 4.34 5 5.0 0.395 

0.0254 2.2 0.167 0.00640 4.34 5 6.0 0.395 

0.0181 2.2 0.143 0.00470 4.34 5 7.0 0.395 

0.0135 2.2 0.125 0.00360 4.34 5 8.0 0.395 

0.0104 2.2 0.111 0.00284 4.34 5 9.0 0.395 
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ueing length and the steady-state probability based on 
the analysis results of four Erlang interarrival/Erlang ser-
vice/1 queueing systems. As the result, we have presen-
ted the approximation formulae for the average queu-
eing length and the steady-state probability. The effec-
tiveness of the proposed approximation technique has 
been verified. In this article, we have proposed the ap-
proximation technique for the distribution, provided that 
the squared coefficient of variation is less than 1. The 
analysis technique in the case that the squared coeffi-
cient of variation is greater than 1.0 would be left as the 
future subject. 

 
Table 5. The steady-state probability ( 0.8)ρ = . 

np  simulation Proposed method Kobayashi 

0p  0.199 0.200 0.200 

1p  0.407 0.398 0.433 

2p  0.218 0.220 0.199 

3p  0.097 0.095 0.091 

4p  0.043 0.041 0.042 

5p  0.020 0.018 0.019 
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