• 제목/요약/키워드: Auxin

Search Result 343, Processing Time 0.03 seconds

Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.903-909
    • /
    • 2015
  • Indole-3-acetic acid (IAA) production is a typical mechanism of plant growth promotion by some rhizobacteria. However, a functional genomic study is necessary to unravel the function and mechanism of IAA signaling during rhizobacteria-plant interactions. In this study, the expression of SlIAA1 and SlIAA9 among the auxin response genes in tomato was examined during the interaction between IAA-producing Acinetobacter guillouiae SW5 and tomato plants. When 3-day grown tomato seedlings were treated for 30 min with 10~100 µM of IAA produced by bacteria from tryptophan, the relative mRNA levels of SlIAA1 and SlIAA9 increased significantly compared with those of the control, demonstrating that IAA produced by this bacterium can induce the expressions of both genes. Inoculation of live A. guillouiae SW5 to tomato seedlings also increased the expressions of SlIAA1 and SlIAA9, with more mRNA produced at higher bacterial density. In contrast, treatment of tomato seedlings with dead A. guillouiae SW5 did not significantly affect the expression of SlIAA1and SlIAA9. When 3-day bacterial culture in tomato root exudates was administered to tomato seedlings, the relative mRNA level of SlIAA1 increased. This result indicated that the plant may take up IAA produced by bacteria in plant root exudates, which may increase the expression of the auxin response genes, with resulting promotion of plant growth.

Regulation of the Korean Radish Cationic Peroxidase Promoter by Phytohormones and Other Reagents

  • Lee, Dong-Ju;Kim, Sung-Soo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.51-59
    • /
    • 1999
  • The Korean radish cationic peroxidase (KRCP) promoter, comprising nucleotides -471 to +704 relative to the transcriptional initiation site, was fused to the GUS gene and transformed to tobacco BY-2 cells. We examined how auxin (2,4-dichlorophenoxyacetic acid, 2,4-D), cytokinin (6-benzylaminopurine, BAP), gibberellic acid ($GA_3$), abscisic acid (ABA), methyl jasmonate (MeJA), and phosphatidic acid (PA) affect the GUS expression in the presence or absence of 2,4-D in a modified LS medium. Exogenous 2,4-D or BAP greatly decreased the GUS expression regulated by the KRCP promoter in a modified LS medium containing 0.2 mg/l 2,4-D. $GA_3$ increased the GUS expression and ABA completely reduced the inductive effect of $GA_3$. The GUS expression was also increased dose-dependently by plant defense regulators, MeJA and PA. In contrast to the above results, auxin deprivation from the modified LS medium increased the GUS expression after treatment with exogenous 2,4-D whereas BAP still greatly decreased the GUS expression dose-dependently. $GA_3$ or MeJA slightly decreased the GUS expression. The data suggest that auxin deprivation changes the sensitivity of the suspension cells to exogenous chemicals and that the regulation of the KRCP promoter by 2,4-D, $GA_3$, and MeJA is dependent on auxin, whereas the regulation by BAP is not. This study will be valuable for understanding the function and expression mode of the Korean radish cationic peroxidase in Korean radish.

  • PDF

Effects of Plant Growth Regulators on the Regrowth of Perennial Ryegrass (Lolium perenne L.) (식물 생장 조절물질이 페레니얼 라이그라스의 재생에 미치는 영향)

  • 김미혜;이효신;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Plant growth regulators were treated on the cut perennial ryegrass (Lolium perenne L. cv. Reveille) to investigate the effect on the regrowth after cutting. The growth showed better result when 0.1 or 0.5 mg/L cytokinin were treated. Among cytokinins, kinetin or 2iP gave the better effect on the growth than BAP. In 2.4-D as an auxin. cut plants grew best at the concentration of 0.1 mg/L. The initial regrowth was very vigorous when GA$_3$ was treated as a growth regulator, but the growth was retarded after 2 weeks later of cutting. Co-treatment of kinetin as a cytokinin and 2,4-D as an auxin showed synergistic effect on the regrowth of cut perennial ryegrass. Both plant growth regulators gave the same result at the same concentrations in the suspension culture of perennial ryegrass cells.

  • PDF

Transgenic poplar expressing AtNDPK2 exhibits enhanced biomass in the LMO field

  • An, Chul-Han;Kim, Yun-Hee;Park, Sung-Chul;Jeong, Jae-Cheol;Lee, Haeng-Soon;Choi, Yong-Im;Noh, Eun-Woon;Yun, Dae-Jin;Kim, Se-Bin;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.228-233
    • /
    • 2011
  • Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes and auxin-responsive genes in plants. Previously, it was noted that the overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic poplar (Populus alba ${\times}$ P. tremular var. glandulosa) plants (referred to as SN plants) enhanced tolerance to oxidative stress and improved growth (Plant Biotechnol J 9: 34-347, 2011). In this study, growth of transgenic poplar was assessed under living modified organism (LMO) field conditions in terms of biomass in the next year. The growth of transgenic poplar plants increased in comparison with non-transgenic plants. The SN3 and SN4 transgenic lines had 1.6 and 1.2 times higher dry weight in stems than non-transgenic plants at 6 months after planting, respectively. Transgenic poplar also exhibited increased transcript levels of auxin-response genes such as IAA1, IAA2, IAA5 and IAA6. These results suggest that enhanced AtNDPK2 expression increases plant biomass in transgenic poplar through the regulation of auxin-response genes.

Effects of Auxin and Fog Treatments on the Green-Wood Cutting of the Mature Trees in Prunus yedoensis (왕벚나무 성숙목의 녹지삽목에서 Auxin 및 Fog 처리 효과)

  • Kim, Chang-Soo;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.676-683
    • /
    • 2007
  • In an attempt to develop an efficient method for the propagation of mature Prunus yedoensis (45 to 55 years old), green wood cuttings from normal branch and sprouts branch were treated with three different kinds of auxin (Rootone < 1-naphthylacetamide 0.4% >, IBA 100 ppm, and control and two different kinds of fog systems (0.9 L/min. and 0.54 L/min.). The Rootone treatment showed higher values in the percentage of rootings (PR) and the mean number of roots per cutting (NR) than the IBA treatment in the early stage. However, in the late stage, the values of PR and NR in the Rootone treatment become lower than those in the IBA 100 ppm treatment. On the other hand, root development ceased 62 days after taking cuttings for all of the treatments. The IBA 100 ppm treatment showed the best performance in root development (PR= 89.5%, NR = 6.5, LR=6.4 cm). The values of PR (76.5%) and NR (6.4) in the 0.9 L/min. of fog treatment was higher than those (PR = 71.7% and NR = 5.4) in the 0.54 L/min. of fog treatment. The cuttings from sprouts (PR: 74.8%, NR: 5.9, LR: 5.7 cm) showed slightly better performance in rooting rate that the cuttings from shoots (PR : 73.3%, NR: 5.9, LR: 5.4 cm). Statistically significant interactions were presented among most of the different combinations of three factors (auxin treatments, fog treatments, and types of cuttings). The PR showed the highest value of 98.0% in the combination of cuttings of shoots+IBA 100 ppm+0.54 L/min. fog treatments. In case of NR, the cuttings from normal branch showed a higher value than the cuttings from sprouts branch under the fog treatment of 0.9 L/min., while this tendency was reversed under the fog treatment of 0.54 L/min.. The perigon development of roots, which reflects the number and the direction of roots, was best in the IBA treatment (85.6%).

Isolation and Characterization of Plant Growth Promoting Rhizobacteria From Button Mushroom Compost

  • Oh, Sung-Hoon;Lee, Chang-Jung;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • An auxin-producing bacteria (strain 5-1) was isolated from button mushroom compost in Boryeong-Si, Chungcheongnam-Do. The 5-1 strain was classified as a novel strain of Enterobacter aerogenes based on chemotaxonomic and phylogenetic analyses. The isolated E. aerogenes 5-1 was confirmed to produce indole-3-acetic acid (IAA), one of the auxin hormones, using TLC and HPLC analyses. When the concentration of IAA was assessed by performing HPLC quantitative analysis, a maximum concentration of IAA of $109.9mgL^{-1}$ was detected in the culture broth incubated in R2A medium containing 0.1% L-tryptophan for 24 h at $35^{\circ}C$. Acidification of the culture was deemed caused by an increase of IAA because a negative relationship between IAA production and pH was observed. Supplementation with a known precursor of IAA production, L-tryptophan, appeared to induce maximal production at 0.1% concentration, but it reduced production at concentrations above 0.2%. To investigate the growth-promoting effects to crops, the culture broth of E. aerogenes 5-1 was used to inoculate water cultures and seed pots of mung bean and lettuce. In consequence, adventitious root induction and root growth of mung bean and lettuce were two times higher than those of the control.

Studies on Rooting of Taxus cuspidata Cuttings by Electric Treatment (전기처리에 의한 주목의 삽목발근에 관한 연구)

  • 정진철;최정호;장규관
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 1994
  • Tow-year-old Taxus cuspidata shoot cuttings were treated with various electrical impacts of cathode on their base and anode on their apex by normal and reverse source. The cuttings were previously treated with 200ppm IBA for 12 hours and the rooting percentage, the length, and the weight of roots were checked. The auxin contents of cuttings were also examined by high-performance liquid chromatography. The results obtained on this study are as follows; 1. Normal treatment, cathode into the base and anode into apex, seemed to accelerate rooting while reverse treatment showed less effective than normal treatment on rooting, but both treatments were more effective than control. 2. The impact of electrical treatment at 30mV for 30min has a remarkable effect on the percentage rooting, the length, and the weight of roots. 3. Root primordia were formed at the basipetal end of cuttings where the end of primary pith ray meets the cambium in control treatment and formed at the basal part of cuttings irregularly in electrical treatment. 4. High-performance liquid chromatography showed electrical treatment was more effective on auxin accumulation than control, and 30mV-30min was the most effective on auxin accumulation.

  • PDF

Expression of Kip-related protein 4 gene (KRP4) in response to auxin and cytokinin during growth of Arabidopsis thalia

  • Cho, Hye-Jeong;Kwon, Hye-Kyoung;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.273-278
    • /
    • 2010
  • The cell cycle is regulated by cyclin-dependent kinase (CDK)-cyclin complexes as well as other regulators. We isolated Kip-related protein 4 (KRP4) cDNA that encodes 289 amino acids including six conserved domains. To investigate the expression pattern of KRP4 as well as of other cell cycle-related genes associated with plant hormones, Arabidopsis seedlings were cultured on MS medium containing auxin or cytokinin. All seedlings treated with phytohormones displayed an increased proportion of cells in S phase. A higher proportion of cells in G2 phase was observed in seedlings treated with NAA. RT-PCR confirmed that the expression of KRP4 was decreased after treatment with phytohormones, and that CDKA and D-type cyclin transcription was increased. Additionally, mitotic cyclins were up-regulated by NAA treatment. These results suggest that KRP4 as well as other cell cycle-related genes might contribute to the control of plant growth in response to exogenous hormones.

Plant Growth-Promoting Capabilities of Diazotrophs from Wild Gramineous Crops (야생 벼과식물 유래 질소고정세균의 식물생장촉진 관련 특성)

  • Lee Su-Jin;Lee Sang-Eun;Seul Keyung-Jo;Park Seung-Hwan;Ghim Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.78-82
    • /
    • 2006
  • Since there could be more and rather various diazotrophs in rhizosphere of wild crops than those in rhizosphere of cultivars, some wild gramineous crops grown in Korea were collected for isolating nitrogen-fixing bacteria. Six diazotrophs were purified from their roots using nitrogen-free media. The isolated bacteria were partially identified as 4 genera by 16S rDNA sequence analysis: Stenotrophomonas sp., Bosea sp., Klebsiella sp., and Azorhizobium sp. By PCR amplification and sequence analysis, DNA fragments extracted from all isolates turned out to have an individual nifH homologous gene. Five isolates (KNUC163, KNUC165, KNUC169, KNUC170, and KNUC171) showed auxin activity and four isolates (KNUC163, KNUC166, KNUC170, and KNUC171) produced siderophores. Especially,3 strains of S. maltophilia showed both auxin and siderophore activities. In conclusion, the isolated nitrogen-fixing bacteria might have capabilities for plant growth promotion.

Substrate-Dependent Auxin Production by Rhizobium phaseoli Improves the Growth and Yield of Vigna radiata L. Under Salt Stress Conditions

  • Zahir, Z.A.;Shah, M. Kashif;Naveed, M.;Akhter, M. Javed
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1288-1294
    • /
    • 2010
  • Rhizobium phaseoli strains were isolated from the mung bean (Vigna radiata L.) nodules, and the most salt tolerant and high auxin producing rhizobial isolate N20 was evaluated in the presence and absence of L-tryptophan (L-TRP) for improving the growth and yield of mung bean under saline conditions in a pot experiment. Mung bean seeds were inoculated with peat-based inoculum and NP fertilizers were applied at 30-60 kg/ha, respectively. Results revealed that imposition of salinity reduced the growth and yield of mung bean. On the contrary, the separate application of L-TRP and Rhizobium appeared to mitigate the adverse effects of salt stress. However, their combined application produced more pronounced effects and increased the plant height (28.2%), number of nodules per plant (71.4%), plant biomass (61.2%), grain yield (65.3%), and grain nitrogen concentration (22.4%) compared with untreated control. The growth promotion effect might be due to higher auxin production in the rhizosphere and improved mineral uptake that reduced the adverse effects of salinity. The results imply that supplementing Rhizobium inoculation with L-TRP could be a useful approach for improving the growth and yield of mung bean under salt stress conditions.