인공지능 및 무인 감시, 자율화 기술의 발전으로 인해 무인으로 운용되는 원격 감시/자율 주행 시스템의 개발이 활발히 연구되고 있다. 개발되는 원격운용 및 제어 시스템의 효과적인 성능분석을 위해서는 원격운용 시스템의 데이터를 실시간으로 기록하고 그 데이터를 분석하는 일이 중요하다. 또한, 통제 시스템과 원격 시스템 간의 성능분석을 위해서는 각 시스템의 기록데이터 간 시간동기화가 필수적으로 요구된다. 본 논문에서는 원격운용 시스템의 기록데이터 분석을 위한 GPS 기반 시간동기화 설계 방안을 제시한다. 제안 방법은 기록데이터에 GPS 신호를 활용한 정밀한 시간정보를 기록함으로써 원격 시스템이 기록데이터 시간 오차를 1ms 이내로 만족할 수 있도록 하였으며, OS 내 설정을 통해 이더넷 통신을 특정 CPU가 전담하도록 하는 CPU shielding 및 affinity 설정 기법을 통해 시간동기화 성능을 개선하였다. 제안 방법은 단계별 실험 및 네트워크 데이터 저장 실험을 통해서 그 성능을 입증하였으며, 무인수색차량의 무인차량과 통제차량 기록장치에 적용할 수 있음을 확인하였다. 제안 방법은 향후 무인수색차량의 네트워크 데이터 분석 방법으로 활용할 예정이며, 활용 중에 발생하는 다양한 분석을 통해 성능 개선을 해 나갈 예정이다.
본 연구는 우리나라 중소기업들에게 4차 산업혁명 대응과 스마트 기업으로의 변화를 위해서는 어떠한 기술들을 우선적으로 적용하여야 하는가에 대한 내용을 AHP를 활용하여 규명하는 것이다. 이를 위하여 4차 산업혁명 관련 기술들을 종합하고, 김대훈 외(2019)의 분류기준을 준용하지만 전문가들의 의견을 추가로 수렴하여 관련 기술들을 분류하였다. 인공지능(AI), Big Data, Cloud Computing을 디지털 기반기술로, 모바일, 사물인터넷(IoT), Block Chain을 초연결 기술로, 무인운송(자율주행), 로봇(Robot), 3D 프린팅, 드론을 융합기술로, 스마트 제조 및 물류, 스마트 헬스케어, 스마트 교통, 스마트 금융을 스마트 산업기술로 구분하였다. AHP 분석과 종합가중치를 계산하는 방식으로 기술적용 우선순위를 확인한 결과 제조기업은 모바일, 인공지능(AI), Big Data, 로봇(Robot)의 순위가 높으며, 서비스기업은 Big Data, 로봇(Robot), 인공지능(AI), 스마트 헬스케어의 순위가 높고 전체기업에서는 Big Data, 인공지능(AI), 로봇(Robot), 모바일의 순서이다. 본 연구를 통해 4차 산업혁명 대응과 스마트 기업으로의 변화를 위해서는 어떠한 기술들을 우선적으로 적용하여야 하는가를 명확하게 규명하였다.
Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.
고전압 전력반도체의 수요는 산업의 전반에 걸쳐 증가하고 있는 추세이며, 특히 자율주행이나 전기자동차와 같은 교통 수단에 이용되는 경우 전동차의 동력 추진 제어 장치에 3.3 kV 이상의 IGBT 모듈 부품이 사용되고 있으며, 전동차의 신설과 유지 관리에 따른 부품의 조달이 매년 증가하고 있다. 게다가 기술 진입 장벽이 매우 높은 기술로서 해당 산업계에서는 고전압 IGBT부품의 최적화 연구가 절실히 요구되고 있다. 3.3 kV 이상 고전압 IGBT 소자 개발을 위해 웨이퍼의 비저항 범위 설정과 주요 단위 공정의 최적 조건이 중요한 변수이며, 높은 항복 전압을 위한 핵심 기술로 junction depth의 확보가 무엇보다 중요하다. 최적의 junction depth를 확보하기 위한 제조 공정 중에서 단위 공정 중 한 단계인 확산 공정의 최적화를 살펴보았다. 확산 공정에서는 주입되는 가스의 종류와 시간 그리고 온도가 주요 변수이다. 본 연구에서는 단위 공정의 시뮬레이션을 통하여 고전압 IGBT 소자 개발을 위한 웨이퍼 저항의 (Ω cm) 범위를 설정하고, 확산 공정의 온도에 따른 확산 공정의 WDR(Well drive in) 조건 최적화에 대하여 연구한 결과 링 패턴의 width 23.5 ~ 25.87 ㎛에 대하여 junction depth는 7.4 ~ 7.5 ㎛를 얻어 3.3 kV 고전압 전력반도체 지지에 최적화할 수 있었다.
최근 전 세계적으로 빅데이터, AI, IoT, 자율주행, 디지털트윈 등 스마트시티 솔루션이 발달하면서 다양한 스마트기기와 SNS가 확산하고 사람들이 도처에 남긴 행적이 기록되면서 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 '빅데이터' 환경을 활용한 스마트시티 구축이 활발하게 진행 중이다. 본 연구의 목적은 4차 산업혁명에 따른 지속가능한 스마트시티의 도시정보·대중교통 접근성에 있어 시민의 교통 편의성 향상 및 효율적인 정책수립을 위해 빅데이터 기반의 객관적이고 체계적인 분석 모델을 개발하고, 지속가능한 도시의 공공·민간 DB를 활용한 빅데이터 기반 대중교통 접근성 및 정책관리 플랫폼 구축의 방법론을 도출하는데 있다. 이를 위해 광주광역시를 대상으로 상세생활권을 구분하고 기초 생활편의시설 접근성 및 빅데이터 기반 대중교통 시스템을 분석하였다. 그 결과, 1) 대중교통 네트워크 평가를 위한 빅데이터 활용, 2) 빅데이터 기반의 교통 수단/서비스 의사결정지원, 3) 도심 교통 네트워크 모니터링 서비스 제공, 4) 주차수요 발생원 분석 및 개선방안 제공과 같은 빅데이터 기반 도시정보·대중교통 접근성 플랫폼 구축을 제안하였다.
교통사고 잦은 곳 개선사업을 통하여 사고가 크게 감소하고 있다. 이러한 결과는 안전 시설물이 큰 역할을 하고 있다. 교통사고는 여러 가지 원인과 다양한 환경적인 요소로 인하여 발생하게 되는데, 한가지 안전시설물 혹은 기준 없는 시설물 설치로는 개선효과를 얻기 어렵다. 따라서 본 연구는 두 가지 안전시설물의 조합으로 사고유형별 개선효과를 분석하였고, 도로종류, 도로형태, 교통량 등으로 환경적인 요소도 포함하여 특정 지점에 맞는 안전시설물 조합을 예측하는 방법을 제시하였다. 예측은 단순 분류가 가능한 예측 모델들을 결합하여 하나의 강한 예측 모델을 만드는 XGBoost 기법으로 선정하여 진행하였다. 이를 통해 최종적으로 현재까지 교통사고 잦은 곳 개선사업을 통해 긍정적인 효과를 가져다 준 안전시설물과 개선이 필요한 지점에 설치될 안전시설물을 같이 도출하여, 안전시설물 효과분석과 향후 설치지점에 대한 예측방법을 제시하였다.
최근 들어, 라이다 기술의 발전에 따라 정확한 거리 측정이 가능해지면서 라이다 기반의 3차원 객체 탐지 네트워크에 대한 관심이 증가하고 있다. 기존의 네트워크는 복셀화 및 다운샘플링 과정에서 공간적인 정보 손실이 발생해 부정확한 위치 추정 결과를 발생시킨다. 본 연구에서는 고수준 특징과 높은 위치 정확도를 동시에 획득하기 위해 어텐션 기반 융합 방식과 카메라-라이다 융합 시스템을 제안한다. 먼저, 그리드 기반의 3차원 객체 탐지 네트워크인 Voxel-RCNN 구조에 어텐션 방식을 도입함으로써, 다중 스케일의 희소 3차원 합성곱 특징을 효과적으로 융합하여 3차원 객체 탐지의 성능을 높인다. 다음으로, 거짓 양성을 제거하기 위해 3차원 객체 탐지 네트워크의 탐지 결과와 이미지상의 2차원 객체 탐지 결과를 결합하는 카메라-라이다 융합 시스템을 제안한다. 제안 알고리즘의 성능평가를 위해 자율주행 분야의 KITTI 데이터 세트를 이용하여 기존 알고리즘과의 비교 실험을 수행한다. 결과적으로, 차량 클래스에 대해 BEV 상의 2차원 객체 탐지와 3차원 객체 탐지 부분에서 성능 향상을 보였으며 특히 Voxel-RCNN보다 차량 Moderate 클래스에 대하여 정확도가 약 0.47% 향상되었다.
코로나 바이러스 출현 이후, 비대면 서비스가 활성화되면서, 사물인터넷(IoT)의 센싱 정보를 블록체인 기술로 담아 무결성을 보장하는 서비스가 확대되고 있다. 예를 들면, CCTV 등을 이용한 안전, 치안 등의 영역에서는 실시간으로 안전하게 펌웨어가 업데이트되고 악의적 침입이 없었음을 확인하는 과정이 요구된다. 기존의 안전한 보안 처리 절차에서는 공무를 수행하는 담당자가 USB 등을 휴대하고 직접 펌웨어를 업데이트 하는 경우가 많았다. 그러나 하이퍼레저 등프라이빗 블록체인 기술을 활용할 경우, 사물인터넷 환경의 편리성 및 업무 효율성의 증대와 안전을 기대할 수 있다. 이 글은 비대면 환경하에서 펌웨어 업데이트, 기기변경 등 사물인터넷의 취약점을 예방하는 방안을 시나리오적으로 기술하였다. 특히 해킹이나 정보유출 등 악의적인 보안위험에 노출되기 쉬운 사물인터넷에 최적인 블록체인 기법을 소개하였다. 이 글에서는 점차 확대되고 있는 사물인터넷 환경하에서 블록체인기술을 적용한 운영을 통해 무결성을 담보한 보안관리의 필요성 및 체제를 제안하였다. 이를 활용할 경우 추후 사물인터넷 환경의 보안 강화를 위한 가이드라인 등에 블록체인 기법을 어떻게 적용할지에 대한 통찰력을 얻을 것으로 기대된다.
제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.
딥러닝 모델이 컴퓨터 비전 분야에서 혁신적인 성과를 이루어내고 있으나, 적대적 예제에 취약하다는 문제가 지속적으로 제기되고 있다. 적대적 예제는 이미지에 미세한 노이즈를 주입하여 오분류를 유도하는 공격 방법으로서, 현실 세계에서의 딥러닝 모델 적용에 심각한 위협이 될 수 있다. 본 논문에서는 객체의 엣지를 강조하여 학습된 분류 모델과 기본 분류 모델 간 예측 값의 차이를 이용하여 적대적 예제를 탐지하는 모델을 제안한다. 객체의 엣지를 추출하여 학습에 반영하는 과정만으로 분류 모델의 강건성을 높일 수 있으며, 모델 간 예측값의 차이를 통하여 적대적 예제를 탐지하기 때문에 경제적이면서 효율적인 탐지가 가능하다. 실험 결과, 적대적 예제(eps={0.02, 0.05, 0.1, 0.2, 0.3})에 대한 일반 모델의 분류 정확도는 {49.9%, 29.84%, 18.46%, 4.95%, 3.36%}를 보인 반면, Canny 엣지 모델은 {82.58%, 65.96%, 46.71%, 24.94%, 13.41%}의 정확도를 보였고 다른 엣지 모델들도 이와 비슷한 수준의 정확도를 보여, 엣지 모델이 적대적 예제에 더 강건함을 확인할 수 있었다. 또한 모델 간 예측값의 차이를 이용한 적대적 예제 탐지 결과, 각 epsilon별 적대적 예제에 대하여 {85.47%, 84.64%, 91.44%, 95.47%, 87.61%}의 탐지율을 확인할 수 있었다. 본 연구가 관련 연구 분야 및 의료, 자율주행, 보안, 국방 등의 응용 산업 분야에서 딥러닝 모델의 신뢰성 제고에 기여할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.