• 제목/요약/키워드: Autonomous-Driving

검색결과 978건 처리시간 0.029초

원격운용 시스템의 네트워크 성능분석을 위한 시간동기화 방안에 관한 연구 (A Study on Time Synchronization Method for Analyzing the Network Performance of Remote Control System)

  • 양동원;김남곤;김도종
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.141-149
    • /
    • 2022
  • 인공지능 및 무인 감시, 자율화 기술의 발전으로 인해 무인으로 운용되는 원격 감시/자율 주행 시스템의 개발이 활발히 연구되고 있다. 개발되는 원격운용 및 제어 시스템의 효과적인 성능분석을 위해서는 원격운용 시스템의 데이터를 실시간으로 기록하고 그 데이터를 분석하는 일이 중요하다. 또한, 통제 시스템과 원격 시스템 간의 성능분석을 위해서는 각 시스템의 기록데이터 간 시간동기화가 필수적으로 요구된다. 본 논문에서는 원격운용 시스템의 기록데이터 분석을 위한 GPS 기반 시간동기화 설계 방안을 제시한다. 제안 방법은 기록데이터에 GPS 신호를 활용한 정밀한 시간정보를 기록함으로써 원격 시스템이 기록데이터 시간 오차를 1ms 이내로 만족할 수 있도록 하였으며, OS 내 설정을 통해 이더넷 통신을 특정 CPU가 전담하도록 하는 CPU shielding 및 affinity 설정 기법을 통해 시간동기화 성능을 개선하였다. 제안 방법은 단계별 실험 및 네트워크 데이터 저장 실험을 통해서 그 성능을 입증하였으며, 무인수색차량의 무인차량과 통제차량 기록장치에 적용할 수 있음을 확인하였다. 제안 방법은 향후 무인수색차량의 네트워크 데이터 분석 방법으로 활용할 예정이며, 활용 중에 발생하는 다양한 분석을 통해 성능 개선을 해 나갈 예정이다.

4차 산업혁명 대응과 스마트 기업으로의 변화를 위한 제조 및 서비스 기업의 기술적용 우선순위에 대한 연구 (A Study on the Technological Priorities of Manufacturing and Service Companies for Response to the 4th Industrial Revolution and Transformation into a Smart Company)

  • 박찬권;서영복
    • 융합정보논문지
    • /
    • 제11권4호
    • /
    • pp.83-101
    • /
    • 2021
  • 본 연구는 우리나라 중소기업들에게 4차 산업혁명 대응과 스마트 기업으로의 변화를 위해서는 어떠한 기술들을 우선적으로 적용하여야 하는가에 대한 내용을 AHP를 활용하여 규명하는 것이다. 이를 위하여 4차 산업혁명 관련 기술들을 종합하고, 김대훈 외(2019)의 분류기준을 준용하지만 전문가들의 의견을 추가로 수렴하여 관련 기술들을 분류하였다. 인공지능(AI), Big Data, Cloud Computing을 디지털 기반기술로, 모바일, 사물인터넷(IoT), Block Chain을 초연결 기술로, 무인운송(자율주행), 로봇(Robot), 3D 프린팅, 드론을 융합기술로, 스마트 제조 및 물류, 스마트 헬스케어, 스마트 교통, 스마트 금융을 스마트 산업기술로 구분하였다. AHP 분석과 종합가중치를 계산하는 방식으로 기술적용 우선순위를 확인한 결과 제조기업은 모바일, 인공지능(AI), Big Data, 로봇(Robot)의 순위가 높으며, 서비스기업은 Big Data, 로봇(Robot), 인공지능(AI), 스마트 헬스케어의 순위가 높고 전체기업에서는 Big Data, 인공지능(AI), 로봇(Robot), 모바일의 순서이다. 본 연구를 통해 4차 산업혁명 대응과 스마트 기업으로의 변화를 위해서는 어떠한 기술들을 우선적으로 적용하여야 하는가를 명확하게 규명하였다.

인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템 (Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence)

  • 이관수;김재우;조수찬;신보성
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.

고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구 (A study on process optimization of diffusion process for realization of high voltage power devices)

  • 김봉환;김덕열;이행자;최규철;장상목
    • 청정기술
    • /
    • 제28권3호
    • /
    • pp.227-231
    • /
    • 2022
  • 고전압 전력반도체의 수요는 산업의 전반에 걸쳐 증가하고 있는 추세이며, 특히 자율주행이나 전기자동차와 같은 교통 수단에 이용되는 경우 전동차의 동력 추진 제어 장치에 3.3 kV 이상의 IGBT 모듈 부품이 사용되고 있으며, 전동차의 신설과 유지 관리에 따른 부품의 조달이 매년 증가하고 있다. 게다가 기술 진입 장벽이 매우 높은 기술로서 해당 산업계에서는 고전압 IGBT부품의 최적화 연구가 절실히 요구되고 있다. 3.3 kV 이상 고전압 IGBT 소자 개발을 위해 웨이퍼의 비저항 범위 설정과 주요 단위 공정의 최적 조건이 중요한 변수이며, 높은 항복 전압을 위한 핵심 기술로 junction depth의 확보가 무엇보다 중요하다. 최적의 junction depth를 확보하기 위한 제조 공정 중에서 단위 공정 중 한 단계인 확산 공정의 최적화를 살펴보았다. 확산 공정에서는 주입되는 가스의 종류와 시간 그리고 온도가 주요 변수이다. 본 연구에서는 단위 공정의 시뮬레이션을 통하여 고전압 IGBT 소자 개발을 위한 웨이퍼 저항의 (Ω cm) 범위를 설정하고, 확산 공정의 온도에 따른 확산 공정의 WDR(Well drive in) 조건 최적화에 대하여 연구한 결과 링 패턴의 width 23.5 ~ 25.87 ㎛에 대하여 junction depth는 7.4 ~ 7.5 ㎛를 얻어 3.3 kV 고전압 전력반도체 지지에 최적화할 수 있었다.

빅데이터 기반의 도시정보·접대중교통근성 분석 플랫폼 구축 방안에 관한 연구 -광주광역시를 중심으로- (A study on the Construction of a Big Data-based Urban Information and Public Transportation Accessibility Analysis Platforms- Focused on Gwangju Metropolitan City -)

  • 이상근;유승민;이준;김대일
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.49-62
    • /
    • 2022
  • 최근 전 세계적으로 빅데이터, AI, IoT, 자율주행, 디지털트윈 등 스마트시티 솔루션이 발달하면서 다양한 스마트기기와 SNS가 확산하고 사람들이 도처에 남긴 행적이 기록되면서 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 '빅데이터' 환경을 활용한 스마트시티 구축이 활발하게 진행 중이다. 본 연구의 목적은 4차 산업혁명에 따른 지속가능한 스마트시티의 도시정보·대중교통 접근성에 있어 시민의 교통 편의성 향상 및 효율적인 정책수립을 위해 빅데이터 기반의 객관적이고 체계적인 분석 모델을 개발하고, 지속가능한 도시의 공공·민간 DB를 활용한 빅데이터 기반 대중교통 접근성 및 정책관리 플랫폼 구축의 방법론을 도출하는데 있다. 이를 위해 광주광역시를 대상으로 상세생활권을 구분하고 기초 생활편의시설 접근성 및 빅데이터 기반 대중교통 시스템을 분석하였다. 그 결과, 1) 대중교통 네트워크 평가를 위한 빅데이터 활용, 2) 빅데이터 기반의 교통 수단/서비스 의사결정지원, 3) 도심 교통 네트워크 모니터링 서비스 제공, 4) 주차수요 발생원 분석 및 개선방안 제공과 같은 빅데이터 기반 도시정보·대중교통 접근성 플랫폼 구축을 제안하였다.

교통사고 잦은 곳 안전시설 개선 방안 예측 모델 개발 (Development of Prediction Model for Improvement of Safety Facilities in Frequent Traffic Accidents)

  • 권재경;김시원;황재성;이재형;이철기
    • 한국ITS학회 논문지
    • /
    • 제22권1호
    • /
    • pp.16-24
    • /
    • 2023
  • 교통사고 잦은 곳 개선사업을 통하여 사고가 크게 감소하고 있다. 이러한 결과는 안전 시설물이 큰 역할을 하고 있다. 교통사고는 여러 가지 원인과 다양한 환경적인 요소로 인하여 발생하게 되는데, 한가지 안전시설물 혹은 기준 없는 시설물 설치로는 개선효과를 얻기 어렵다. 따라서 본 연구는 두 가지 안전시설물의 조합으로 사고유형별 개선효과를 분석하였고, 도로종류, 도로형태, 교통량 등으로 환경적인 요소도 포함하여 특정 지점에 맞는 안전시설물 조합을 예측하는 방법을 제시하였다. 예측은 단순 분류가 가능한 예측 모델들을 결합하여 하나의 강한 예측 모델을 만드는 XGBoost 기법으로 선정하여 진행하였다. 이를 통해 최종적으로 현재까지 교통사고 잦은 곳 개선사업을 통해 긍정적인 효과를 가져다 준 안전시설물과 개선이 필요한 지점에 설치될 안전시설물을 같이 도출하여, 안전시설물 효과분석과 향후 설치지점에 대한 예측방법을 제시하였다.

3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크 (Attention based Feature-Fusion Network for 3D Object Detection)

  • 유상현;강대열;황승준;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제27권2호
    • /
    • pp.190-196
    • /
    • 2023
  • 최근 들어, 라이다 기술의 발전에 따라 정확한 거리 측정이 가능해지면서 라이다 기반의 3차원 객체 탐지 네트워크에 대한 관심이 증가하고 있다. 기존의 네트워크는 복셀화 및 다운샘플링 과정에서 공간적인 정보 손실이 발생해 부정확한 위치 추정 결과를 발생시킨다. 본 연구에서는 고수준 특징과 높은 위치 정확도를 동시에 획득하기 위해 어텐션 기반 융합 방식과 카메라-라이다 융합 시스템을 제안한다. 먼저, 그리드 기반의 3차원 객체 탐지 네트워크인 Voxel-RCNN 구조에 어텐션 방식을 도입함으로써, 다중 스케일의 희소 3차원 합성곱 특징을 효과적으로 융합하여 3차원 객체 탐지의 성능을 높인다. 다음으로, 거짓 양성을 제거하기 위해 3차원 객체 탐지 네트워크의 탐지 결과와 이미지상의 2차원 객체 탐지 결과를 결합하는 카메라-라이다 융합 시스템을 제안한다. 제안 알고리즘의 성능평가를 위해 자율주행 분야의 KITTI 데이터 세트를 이용하여 기존 알고리즘과의 비교 실험을 수행한다. 결과적으로, 차량 클래스에 대해 BEV 상의 2차원 객체 탐지와 3차원 객체 탐지 부분에서 성능 향상을 보였으며 특히 Voxel-RCNN보다 차량 Moderate 클래스에 대하여 정확도가 약 0.47% 향상되었다.

사물인터넷 환경에서 블록체인 기술을 이용한 보안 관리에 관한 소고(주행 환경 센싱 데이터 및 탑승자 데이터를 포함한 자율주행차량에서의 보안 사례를 중심으로) (The study of security management for application of blockchain technology in the Internet of Things environment (Focusing on security cases in autonomous vehicles including driving environment sensing data and occupant data))

  • 강장묵
    • 융합보안논문지
    • /
    • 제22권4호
    • /
    • pp.161-168
    • /
    • 2022
  • 코로나 바이러스 출현 이후, 비대면 서비스가 활성화되면서, 사물인터넷(IoT)의 센싱 정보를 블록체인 기술로 담아 무결성을 보장하는 서비스가 확대되고 있다. 예를 들면, CCTV 등을 이용한 안전, 치안 등의 영역에서는 실시간으로 안전하게 펌웨어가 업데이트되고 악의적 침입이 없었음을 확인하는 과정이 요구된다. 기존의 안전한 보안 처리 절차에서는 공무를 수행하는 담당자가 USB 등을 휴대하고 직접 펌웨어를 업데이트 하는 경우가 많았다. 그러나 하이퍼레저 등프라이빗 블록체인 기술을 활용할 경우, 사물인터넷 환경의 편리성 및 업무 효율성의 증대와 안전을 기대할 수 있다. 이 글은 비대면 환경하에서 펌웨어 업데이트, 기기변경 등 사물인터넷의 취약점을 예방하는 방안을 시나리오적으로 기술하였다. 특히 해킹이나 정보유출 등 악의적인 보안위험에 노출되기 쉬운 사물인터넷에 최적인 블록체인 기법을 소개하였다. 이 글에서는 점차 확대되고 있는 사물인터넷 환경하에서 블록체인기술을 적용한 운영을 통해 무결성을 담보한 보안관리의 필요성 및 체제를 제안하였다. 이를 활용할 경우 추후 사물인터넷 환경의 보안 강화를 위한 가이드라인 등에 블록체인 기법을 어떻게 적용할지에 대한 통찰력을 얻을 것으로 기대된다.

제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증 (Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers)

  • 강영진;노태경;김기환;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.49-59
    • /
    • 2023
  • 제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.67-76
    • /
    • 2023
  • 딥러닝 모델이 컴퓨터 비전 분야에서 혁신적인 성과를 이루어내고 있으나, 적대적 예제에 취약하다는 문제가 지속적으로 제기되고 있다. 적대적 예제는 이미지에 미세한 노이즈를 주입하여 오분류를 유도하는 공격 방법으로서, 현실 세계에서의 딥러닝 모델 적용에 심각한 위협이 될 수 있다. 본 논문에서는 객체의 엣지를 강조하여 학습된 분류 모델과 기본 분류 모델 간 예측 값의 차이를 이용하여 적대적 예제를 탐지하는 모델을 제안한다. 객체의 엣지를 추출하여 학습에 반영하는 과정만으로 분류 모델의 강건성을 높일 수 있으며, 모델 간 예측값의 차이를 통하여 적대적 예제를 탐지하기 때문에 경제적이면서 효율적인 탐지가 가능하다. 실험 결과, 적대적 예제(eps={0.02, 0.05, 0.1, 0.2, 0.3})에 대한 일반 모델의 분류 정확도는 {49.9%, 29.84%, 18.46%, 4.95%, 3.36%}를 보인 반면, Canny 엣지 모델은 {82.58%, 65.96%, 46.71%, 24.94%, 13.41%}의 정확도를 보였고 다른 엣지 모델들도 이와 비슷한 수준의 정확도를 보여, 엣지 모델이 적대적 예제에 더 강건함을 확인할 수 있었다. 또한 모델 간 예측값의 차이를 이용한 적대적 예제 탐지 결과, 각 epsilon별 적대적 예제에 대하여 {85.47%, 84.64%, 91.44%, 95.47%, 87.61%}의 탐지율을 확인할 수 있었다. 본 연구가 관련 연구 분야 및 의료, 자율주행, 보안, 국방 등의 응용 산업 분야에서 딥러닝 모델의 신뢰성 제고에 기여할 것으로 기대한다.