• Title/Summary/Keyword: Autonomous unmanned vehicle

Search Result 235, Processing Time 0.022 seconds

A Study on Requirement Analysis of Unmanned Combat Vehicles: Focusing on Remote-Controlled and Autonomous Driving Aspect (무인전투차량 요구사항분석 연구: 원격통제 및 자율주행 중심으로)

  • Dong Woo, Kim;In Ho, Choi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-49
    • /
    • 2022
  • Remote-controlled and autonomous driving based on artificial intelligence are key elements required for unmanned combat vehicles. The required capability of such an unmanned combat vehicle should be expressed in reasonable required operational capability(ROC). To this end, in this paper, the requirements of an unmanned combat vehicle operated under a manned-unmanned teaming were analyzed. The functional requirements are remote operation and control, communication, sensor-based situational awareness, field environment recognition, autonomous return, vehicle tracking, collision prevention, fault diagnosis, and simultaneous localization and mapping. Remote-controlled and autonomous driving of unmanned combat vehicles could be achieved through the combination of these functional requirements. It is expected that the requirement analysis results presented in this study will be utilized to satisfy the military operational concept and provide reasonable technical indicators in the system development stage.

The Research of Unmanned Autonomous Navigation's Map Matching using Vehicle Model and LIDAR (차량 모델 및 LIDAR를 이용한 맵 매칭 기반의 야지환경에 강인한 무인 자율주행 기술 연구)

  • Park, Jae-Ung;Kim, Jae-Hwan;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.451-459
    • /
    • 2011
  • Fundamentally, there are 5 systems are needed for autonomous navigation of unmanned ground vehicle: Localization, environment perception, path planning, motion planning and vehicle control. Path planning and motion planning are accomplished based on result of the environment perception process. Thus, high reliability of localization and the environment perception will be a criterion that makes a judgment overall autonomous navigation. In this paper, via map matching using vehicle dynamic model and LIDAR sensors, replace high price localization system to new one, and have researched an algorithm that lead to robust autonomous navigation. Finally, all results are verified via actual unmanned ground vehicle tests.

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung;Kim, Suseong;Kim, Yookyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1013-1023
    • /
    • 2021
  • In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

Embedded Real-Time Software Architecture for Unmanned Autonomous Helicopters

  • Hong, Won-Eui;Lee, Jae-Shin;Rai, Laxmisha;Kang, Soon-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.243-248
    • /
    • 2005
  • The UAV (Unmanned Aerial Vehicle) systems like unmanned autonomous helicopters are used in various missions of flight navigation and used to collect the environmental information of the surroundings. To realize the full functionalities of the UAV, the software part becomes a challenging problem. In this paper embedded real-time software architecture for unmanned autonomous helicopter is proposed that guarantee real-time performance of hard-real time tasks and re-configurability of soft-real time and non-real time tasks. The proposed software architecture has four layers: hardware, execution, service agent and remote user interface layer according to the reactiveness level for external events. In addition, the layered separation of concurrent tasks makes different kinds of mission reconfiguration possible in the system. An Unmanned autonomous helicopter system was implemented (Kyosho RC Helicopter) in our lab to test and evaluate the performance of the proposed system.

Developments of a Path Planning Algorithm and Simulator for Unmanned Ground Vehicle (무인자율차량을 위한 경로계획 알고리즘 및 시뮬레이터 개발)

  • Kim, Sang-Gyum;Kim, Sung-Gyun;Lee, Yong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • A major concern for Autonomous Military Robot in the rough terrain is the problem of moving robot from an initial configuration to goal configuration. In this paper, We generate a local path to looking for the best route to move an goal configuration while avoiding known obstacle from world model, not violating the mobility constraints of robot. Trough a Simulator for Unmanned Autonomous Vehicle, We can simulate a traversability of unmanned autonomous vehicle based on steering, acceleration, braking command obtained from local path planning.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Autonomous Navigation of KUVE (KIST Unmanned Vehicle Electric) (KUVE (KIST 무인 주행 전기 자동차)의 자율 주행)

  • Chun, Chang-Mook;Suh, Seung-Beum;Lee, Sang-Hoon;Roh, Chi-Won;Kang, Sung-Chul;Kang, Yeon-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.617-624
    • /
    • 2010
  • This article describes the system architecture of KUVE (KIST Unmanned Vehicle Electric) and unmanned autonomous navigation of it in KIST. KUVE, which is an electric light-duty vehicle, is equipped with two laser range finders, a vision camera, a differential GPS system, an inertial measurement unit, odometers, and control computers for autonomous navigation. KUVE estimates and tracks the boundary of road such as curb and line using a laser range finder and a vision camera. It follows predetermined trajectory if there is no detectable boundary of road using the DGPS, IMU, and odometers. KUVE has over 80% of success rate of autonomous navigation in KIST.

Autonomous Navigation System of an Unmanned Aerial Vehicle for Structural Inspection (무인 구조물 검사를 위한 자율 비행 시스템)

  • Jung, Sungwook;Choi, Duckyu;Song, Seungwon;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Recently, various robots are being used for the purpose of structural inspection or safety diagnosis, and their needs are also rising rapidly. Among the structural inspection using robots, a lot of researches has recently been conducted on inspection of various facilities and structures using an unmanned aerial vehicle (UAV). However, since GNSS (Global Navigation Satellite System) signals cannot be received in an environment near or below structures, the operation of UAVs has been done manually. For a stable autonomous flight without GNSS signals, additional technologies are required. This paper proposes the autonomous flight system for structural inspection consisting of simultaneous localization and mapping (SLAM), path planning, and controls. The experiments were conducted on an actual large bridge to verify the feasibility of the system, and especially the performance of the proposed SLAM algorithm was compared through comparative analysis with the state-of-the-art algorithms.

The Utilize V2X about to Autonomous Unmanned Forklift System (자율주행이 가능한 무인지게차 시스템에 대한 V2X 활용)

  • Lee, Jae-Ung;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.229-231
    • /
    • 2018
  • As autonomous vehicle technology has been gradually developed, robots that have introduced autonomous navigation systems have been actively involved in areas where there is a lot of livelihoods such as industrial sites and accident sites. For this reason, the unmanned transportation system equipped with the autonomous traveling system is widely used in harmful environments where human access is difficult. In addition, the introduction of the autonomous driving system reduces the collision and casualties that occur in a mobility environment like the industrial field, and it helps the efficient work process. In addition, autonomous driving vehicles can be handled more safely and quickly in a wider area by transmitting the surrounding environment of each vehicle to a server connected to each autonomous driving vehicle and passing it through the main server. In this paper, by utilizing V2X communication for autonomous unmanned forklift system, it can increase industrial workload, reduce loss of life and damage to property through wide area forklifts.

  • PDF