• Title/Summary/Keyword: Autonomous platform

Search Result 220, Processing Time 0.022 seconds

Implementing Blockchain Based Secure IoT Device Management System (블록체인 기반 안전한 사물인터넷 장치 관리 시스템 구현)

  • Kim, Mihui;Kim, Youngmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1343-1352
    • /
    • 2019
  • To manage the Internet of Things(IoT) Network, which consists of a large number of various devices, a secure and automatic method of strengthening the IoT network is being proposed. Blockchain has a 'smart contract' element of autonomous execution method, which is emerging as a way to not only exchange data quickly without mediators but also securely and automatically manage processes between IoT devices. In this paper, we implement a prototype of the entire IoT device management system based on the EOSIO with DPoS(Distributed Proof of Stake)-based blockchain structure, proposed as a prior study, including the user application DApp(Decentralized Application) and the actual IoT devices (Raspberry Pi-based device, and smart lamp) that interact with the blockchain platform. We analyze the benefits of the system and measure the time overhead to show the feasibility of the system.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.

A Decade of the National Institute for Materials Science as an Independent Administrative Institution

  • Kishi, Teruo;Takemura, Masahiro
    • STI Policy Review
    • /
    • v.3 no.2
    • /
    • pp.152-171
    • /
    • 2012
  • In April 2001, many Japanese national institutes were reorganized as Independent Administrative Institutions (IAI) based on the General Act for Independent Administrative Institutions and the act for each institution. Under the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the National Institute for Materials Science (NIMS) was established by the merger of the National Research Institute for Metals (NRIM) and the National Institute for Research in Inorganic Materials (NIRIM). One of the biggest changes was the expansion of autonomous administration. The nanotechnology and material R&D field was prioritized in the 2nd (2001-2005) and the 3rd (2006-2010) Science and Technology Basic Plans; subsequently, NIMS was assigned to take the initiative in nanotechnology as well as materials science. NIMS has proactively expanded research fields through the introduction of researchers from polymers, electronics, and biotechnology as well as member institutes of the World Materials Research Institute Forum (WMRIF). Globalization has been promoted through programs that include the International Center for Young Scientists (ICYS) and the International Center for Materials Nanoarchitectonics (MANA). The 4th Science and Technology Basic Plan (2011-2015) emphasizes outcomes-recovery and rebirth from the disaster, green innovation, and life innovation. The Midterm Plan for NIMS also follows it. R&D collaboration by multi-partners (that include industry, university, and GRI) should be strategically promoted where GRI are especially required to play a hub function for innovative R&D and open innovation. NIMS highlights are Tsukuba Innovation Arena (TIA) and the Nanotechnology Platform Project. On January 20, 2012, a new organization was decided on by the Japanese Government where several IAI from different science and technology areas will be merged to realize more effective R&D as well as administrative cost reductions. NIMS is also supposed to be merged with 4 other R&D IAI under MEXT by the end of 2013.

Security Analysis of Blockchain Systems: Case Study of Cryptocurrencies (블록체인 시스템의 보안성 분석: 암호 화폐에서의 사례 연구)

  • Lee, Sungbum;Lee, Boohyung;Myung, Sein;Lee, Jong-Hyouk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • With the advance of the 4th industrial revolution, Internet of Things (IoT) technology is actively being studied. In the era of the IoT, a decentralized operation is required to reduce load on servers and enable autonomous IoT data communication rather than focusing on centralized operation of being server client structures. This paper analyzes the security of a blockchain, a new form of distributed database platform that supports integrity and permanence of data. To achieve this, we divide the blockchain's major operations into a consensus process, network communication process, and key management process, and then describe possible attacks and countermeasures in each process. We also describe the attack occurred in typical cryptocurrency platforms such as Bitcoin and Ethereum.

Quality Control Methods for CTD Data Collected by Using Instrumented Marine Mammals: A Review and Case Study (해양포유류 부착 CTD 관측 자료의 품질 관리 방법에 관한 고찰 및 사례 연구)

  • Yoon, Seung-Tae;Lee, Won Young
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.321-334
    • /
    • 2021
  • 'Marine mammals-based observations' refers to data acquisition activities from marine mammals by instrumenting CTD (Conductivity-Temperature-Depth) sensors on them for recording vertical profiles of ocean variables such as temperature and salinity during animal diving. It is a novel data collecting platform that significantly improves our abilities in observing extreme environments such as the Southern Ocean with low cost compared to the other conventional methods. Furthermore, the system continues to create valuable information until sensors are detached, expanding data coverage in both space and time. Owing to these practical advantages, the marine mammals-based observations become popular to investigate ocean circulation changes in the Southern Ocean. Although these merits may bring us more opportunities to understand ocean changes, the data should be carefully qualified before we interpret it incorporating shipboard/autonomous vehicles/moored CTD data. In particular, we need to pay more attention to salinity correction due to the usage of an unpumped-CTD sensor tagged on marine mammals. In this article, we introduce quality control methods for the marine mammals-based CTD profiles that have been developed in recent studies. In addition, we discuss strategies of quality control specifically for the seal-tagging CTD profiles, successfully having been obtained near Terra Nova Bay, Ross Sea, Antarctica since February 2021. It is the Korea Polar Research Institute's research initiative of animal-borne instruments monitoring in the region. We anticipate that this initiative would facilitate collaborative efforts among Polar physical oceanographers and even marine mammal behavior researchers to understand better rapid changes in marine environments in the warming world.

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform (멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.977-985
    • /
    • 2021
  • The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.

MPEG-DASH based 3D Point Cloud Content Configuration Method (MPEG-DASH 기반 3차원 포인트 클라우드 콘텐츠 구성 방안)

  • Kim, Doohwan;Im, Jiheon;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.660-669
    • /
    • 2019
  • Recently, with the development of three-dimensional scanning devices and multi-dimensional array cameras, research is continuously conducted on techniques for handling three-dimensional data in application fields such as AR (Augmented Reality) / VR (Virtual Reality) and autonomous traveling. In particular, in the AR / VR field, content that expresses 3D video as point data has appeared, but this requires a larger amount of data than conventional 2D images. Therefore, in order to serve 3D point cloud content to users, various technological developments such as highly efficient encoding / decoding and storage, transfer, etc. are required. In this paper, V-PCC bit stream created using V-PCC encoder proposed in MPEG-I (MPEG-Immersive) V-PCC (Video based Point Cloud Compression) group, It is defined by the MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard, and provides to be composed of segments. Also, in order to provide the user with the information of the 3D coordinate system, the depth information parameter of the signaling message is additionally defined. Then, we design a verification platform to verify the technology proposed in this paper, and confirm it in terms of the algorithm of the proposed technology.

A Review on Deep Learning Platform for Artificial Intelligence (인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰)

  • Jin, Chan-Yong;Shin, Seong-Yoon;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.169-170
    • /
    • 2019
  • Lately, as artificial intelligence becomes a source of global competitiveness, the government is strategically fostering artificial intelligence that is the base technology of future new industries such as autonomous vehicles, drones, and robots. Domestic artificial intelligence research and services have been launched mainly in Naver and Kakao, but their size and level are weak compared to overseas. Recently, deep learning has been conducted in recent years while recording innovative performance in various pattern recognition fields including speech recognition and image recognition. In addition, deep running has attracted great interest from industry since its inception, and global information technology companies such as Google, Microsoft, and Samsung have successfully applied deep learning technology to commercial products and are continuing research and development. Therefore, we will look at artificial intelligence which is attracting attention based on previous research.

  • PDF

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.