DOI QR코드

DOI QR Code

Quality Control Methods for CTD Data Collected by Using Instrumented Marine Mammals: A Review and Case Study

해양포유류 부착 CTD 관측 자료의 품질 관리 방법에 관한 고찰 및 사례 연구

  • Yoon, Seung-Tae (School of Earth System Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Won Young (Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science & Technology)
  • 윤승태 (경북대학교 자연과학대학 지구시스템과학부) ;
  • 이원영 (한국해양과학기술원부설 극지연구소 생명과학연구부)
  • Received : 2021.09.08
  • Accepted : 2021.10.25
  • Published : 2021.12.30

Abstract

'Marine mammals-based observations' refers to data acquisition activities from marine mammals by instrumenting CTD (Conductivity-Temperature-Depth) sensors on them for recording vertical profiles of ocean variables such as temperature and salinity during animal diving. It is a novel data collecting platform that significantly improves our abilities in observing extreme environments such as the Southern Ocean with low cost compared to the other conventional methods. Furthermore, the system continues to create valuable information until sensors are detached, expanding data coverage in both space and time. Owing to these practical advantages, the marine mammals-based observations become popular to investigate ocean circulation changes in the Southern Ocean. Although these merits may bring us more opportunities to understand ocean changes, the data should be carefully qualified before we interpret it incorporating shipboard/autonomous vehicles/moored CTD data. In particular, we need to pay more attention to salinity correction due to the usage of an unpumped-CTD sensor tagged on marine mammals. In this article, we introduce quality control methods for the marine mammals-based CTD profiles that have been developed in recent studies. In addition, we discuss strategies of quality control specifically for the seal-tagging CTD profiles, successfully having been obtained near Terra Nova Bay, Ross Sea, Antarctica since February 2021. It is the Korea Polar Research Institute's research initiative of animal-borne instruments monitoring in the region. We anticipate that this initiative would facilitate collaborative efforts among Polar physical oceanographers and even marine mammal behavior researchers to understand better rapid changes in marine environments in the warming world.

Keywords

Acknowledgement

이 논문 작성에 유익한 조언을 주신 극지연구소 빙하환경연구본부 이원상 박사님께 감사드립니다. 그리고 현장조사를 수행한 장보고기지 월동대 박지강 생물대원에게 감사를 표합니다. 이 논문은 서남극 스웨이트 빙하 돌발붕괴의 기작규명 및 해수면 상승 영향 연구(KIMST20190361), 극지연구소 기관고유사업(PE21140)의 지원을 받아 작성되었습니다. 이 논문 작성에는 두 저자가 동일한 기여를 하였습니다.

References

  1. Biddle LC, Kaiser J, Heywood KJ, Thompson AF, Jenkins A (2015) Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea. Geophys Res Lett 42:459-465 https://doi.org/10.1002/2014GL062850
  2. Boehme L, Lovell P, Biuw M, Roquet F, Nicholson J, Thorpe SE, Meredith MP, Fedak M (2009) Technical note: animal-borne CTD-satellite relay data loggers for real-time oceanographic data collection. Ocean Sci 5:685-695 https://doi.org/10.5194/os-5-685-2009
  3. Boehme L, Rosso I (2020) Classifying oceanographic structures in the Amundsen Sea, Antarctica. Geophys Res Lett 48: e2020GL089412
  4. Budillon G, Castagno P, Aliani S, Spezie G, Padman L (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Res Pt I 58:1002-1018 https://doi.org/10.1016/j.dsr.2011.07.002
  5. Budillon G, Cordero SG, Salusti E (2002) On the dense water spreading off the Ross Sea Shelf (Southern Ocean). J Mar Syst 35:207-227 https://doi.org/10.1016/S0924-7963(02)00082-9
  6. Carvalho F, Kohut J, Oliver MJ, Schofield O (2016) Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas. Geophys Res Lett 44:338-345 https://doi.org/10.1002/2016GL071205
  7. Chung H, Lee J, Lee WY (2021) A review: marine biologging of animal behaviour and ocean environments. Ocean Sci J 56:117-131 https://doi.org/10.1007/s12601-021-00015-1
  8. Cochran WW (1980) Wildlife telemetry. In: Schemnitz SD (ed) Wildlife management techniques manual, vol 4. Washington DC, pp 507-520
  9. Costa DP, Klinck JM, Hofmann EE, Dinniman MS, Burns JM (2008) Upper ocean variability in west Antarctic Peninsula continental shelf waters as measured using instrumented seals. Deep-Sea Res Pt II 55:323-337 https://doi.org/10.1016/j.dsr2.2007.11.003
  10. Everett A, Kohler J, Sundfjord A, Kovacs KM, Torsvik T, Pramanik A, Boehme L, Lyderson C (2018) Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals. Sci Rep 8:13467 https://doi.org/10.1038/s41598-018-31875-8
  11. Fedak M, Lovell P, McConnell B, Hunter C (2002) Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages. Integ and Comp Biol 42:3-10 https://doi.org/10.1093/icb/42.1.3
  12. Foppert A, Rintoul SR, England MH (2019) Along-slope variability of cross-slope eddy transport in East Antarctica. Geophys Res Lett 46:8224-8233 https://doi.org/10.1029/2019GL082999
  13. Grist JP, Josey SA, Boehme L, Meredith MP, Laidre KL, Heide-Jorgensen MP, Kovacs KM, Lydersen C, Davidson FJM, Stenson GB, Hammill MO, March R, Coward AC (2014) Seasonal variability of the warm Atlantic water layer in the vicinity of the Greenland shelf break. Geophys Res Lett 41:8530-8537 https://doi.org/10.1002/2014GL062051
  14. Haumann FA, Moorman R, Riser SC, Smedsrud LH, Maksym T, Wong APS, Wilson EA, Drucker R, Talley LD, Johnson KS, Key RM, Sarmiento JL (2020) Supercooled Southern ocean waters. Geophys Res Lett 47:1-11
  15. IPCC (2021) Sixth Assessment Report (AR6) Climate change 2021: the physical science basis. http://www.ipcc.ch/ar6/wg1/ Accessed 1 Sep 2021
  16. Kim S, Jeong J, Seo SG, Im S, Lee WY, Jin SH (2021) Remote recognition of moving behaviors for captive harbor seals using a smart-patch system via bluetooth communication. Micromachines 12(3):267 https://doi.org/10.3390/mi12030267
  17. Labrousse S, Ryan S, Roquet F, Picard B, McMahon CR, Harcourt R, Hindell M, Goff HL, Lourenco A, David Y, Sallee JB, Charrassin JB (2021) Weddell seal behavior during an exceptional oceanographic event in the Filchner-Ronne Ice Shelf in 2017. Ant Sci 33(3):252-264 https://doi.org/10.1017/S0954102021000092
  18. Lueck RG (1990) Thermal inertia of conductivity cells: theory. J Atmos Oceanic Technol 7:741-755 https://doi.org/10.1175/1520-0426(1990)007<0741:TIOCCT>2.0.CO;2
  19. Lueck RG, Picklo JJ (1990) Thermal inertia of conductivity cells: Observations with a sea-bird cell. J Atmos Oceanic Technol 7:756-768 https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2
  20. Lyderson C, Nost AL, Lovell P, McConnell BJ, Gammelsrod T, Hunter C, Fedak MA, Kovacs KM (2002) Salinity and temperature structure of a freezing Arctic fjord-monitored by white whales (Delphinapterus leucas). Geophys Res Lett 29(23):34-1-34-4. doi:10.1029/2002GL015462
  21. McIntyre T, de Bruyn PJN, Ansorge IJ, Bester MN, Bornemann H, Plotz J, Tosh CA (2010) A lifetime at depth: vertical distribution of southern elephant seals in the water column. Polar Biol 33:1037-1048 https://doi.org/10.1007/s00300-010-0782-3
  22. Mensah V, Roquet F, Siegelman L, Picard B, Pauthenet E, Guinet C (2018) A correction for the thermal mass-induced errors of CTD tags mounted on marine mammals. J Atmos Oceanic Technol 35:1237-1252 https://doi.org/10.1175/jtech-d-17-0141.1
  23. Morison J, Anderson R, Larson N, Asaro ED, Boyd T (1994) The correction for thermal-lag effects in sea-bird CTD data. J Atmos Oceanic Technol 11:1151-1164 https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2
  24. Pinones A, Hofmann EE, Coast DP, Goetz K, Burns JM, Roquet F, Dinniman MS, Klinck JM (2019) Hydrographic variability along the inner and mid-shelf region of the western Ross Sea obtained using instrumented seals. Prog Oceanogr 174:131-142 https://doi.org/10.1016/j.pocean.2019.01.003
  25. Proffitt KM, Garrott RA, Rotella JJ, Wheatley KE (2007) Environmental and senescent related variations in Weddell seal body mass: implications for age-specific reproductive performance. Oikos 116:1683-1690 https://doi.org/10.1111/j.0030-1299.2007.16139.x
  26. Roquet F, Wunsch C, Forget G, Heimbach P, Guinet C, Reverdin G, Charrassin J-B, Bailleul F, Costa DP, Huckstadt LA, Goetz KT, Kovacs KM, Lydersen C, Biuw M, Nost OA, Bornemann H, Ploetz J, Bester MN, McIntyre T, Muelbert MC, Hindell MA, McMahon CR, Williams G, Harcourt R, Field IC, Chafik L, Nicholls KW, Boehme L, Fedak MA (2013) Estimates of the Southern Ocean general circulation improved by animal-borne instruments. Geophys Res Lett 40:6176-6180 https://doi.org/10.1002/2013GL058304
  27. Roquet F, Charrassin JB, Marchand S, Boehme L, Fedak M, Reverdin G, Guinet C (2011) Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers. J Atmos Ocean Technol 28:787-801 https://doi.org/10.1175/2010JTECHO801.1
  28. Roquet F, Williams G, Hindell MA, Harcourt R, McMahon C, Guinet C, Charrassin JB, Reverdin G, Boehme L, Lovell P, Fedak M (2014) A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Sci Data 1:140028 https://doi.org/10.1038/sdata.2014.28
  29. Siegelman L, O'Toole M, Flexas M, Riviere P, Klein P (2019a) Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci Rep 9:5588 https://doi.org/10.1038/s41598-019-42117-w
  30. Siegelman L, Roquet F, Mensah V, Riviere P, Pauthenet E, Picard B, Guinet C (2019b) Correction and accuracy of high- and low-resolution CTD data from animal-borne instruments. J Atmos Ocean Technol 36:745-760 https://doi.org/10.1175/JTECH-D-18-0170.1
  31. Sutherland DA, Straneo F, Stenson GB, Davidson FJM, Hammill MO, Asvid AR (2013) Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry. J Geophys Res-Oceans 118:847-855 https://doi.org/10.1029/2012JC008354
  32. Trukhin AM, Permyakov PA, Ryazanov SD, Lobanov VB, Kim HW, Choi YM, Sohn H (2021) Migrations of young spotted seals (Phoca largha) from Peter the Great Bay, Sea of Japan/East Sea, and the pattern of their use of seasonal habitats. PLoS ONE 16(1):e0244232 https://doi.org/10.1371/journal.pone.0244232
  33. Vincent C, McConnell BJ, Ridoux V, Fedak MA (2002) Assessment of Argos location accuracy from satellite tags deployed on captive gray seals. Mar Mamm Sci 18(1): 156-166 https://doi.org/10.1111/j.1748-7692.2002.tb01025.x
  34. Wahlin AK, Graham AGC, Hogan KA, Queste BY, Boehme L, Larter RD, Pettit EC, Wellner J, Heywood KJ (2021) Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica. Sci Adv 7:eabd7254. doi:10.1126/sciadv.abd7254
  35. Williams GD, Herraiz-Borreguero L, Roquet F, Tamura T, Ohshima KI, Fukamachi Y, Fraser AD, Gao L, Chen H, McMahon CR, Harcourt R, Hindell M (2016) The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat Commun 7:12577 https://doi.org/10.1038/ncomms12577
  36. Wong APS, Johnson GC, Owens WB (2003) Delayed-mode calibration of autonomous CTD profiling float salinity data by θ-S climatology. J Atmos Oceanic Technol 20: 308-318 https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
  37. Yoon ST, Lee WS, Stevens C, Jendersie S, Nam SH, Yun S, Hwang CY, Jang GI, Lee J (2020) Variability in high-salinity shelf water production in the Terra Nova Bay polynya, Antarctica. Ocean Sci 16:373-388 https://doi.org/10.5194/os-16-373-2020
  38. Zheng Y, Heywood KJ, Webber BGM, Stevens DP, Biddle LC, Boehme L, Loose B (2021) Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea. Commun 2:40. doi:10.1038/s43247-021-00111-z
  39. Zhou Q, Hattermann T, Nost OA, Biuw M, Kovacs KM, Lyderson C (2014) Wind-driven spreading of fresh surface water beneath ice shelves in the Eastern Weddell Sea. J Geophys Res-Oceans 119:3818-3833 https://doi.org/10.1002/2013JC009556