• 제목/요약/키워드: Autonomous Underwater Vehicle

검색결과 216건 처리시간 0.026초

A Modelling and Control Method for a Hybrid ROV/AUV for Underwater Exploration

  • Nak Yong, Ko;Jiyoun, Moon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.67-73
    • /
    • 2023
  • As interest in underwater structures and ocean exploration increases, many researchers are proposing methods for modeling and controlling various remotely operated vehicles (ROVs). Recently, hybrid systems composed of an autonomous underwater vehicle and an ROV capable of remote control and autonomous navigation are being developed. In this study we introduce a method that models Ariari-aROV, an ROV consisting of five thrusters, and performs navigation. The proposed ROV can be controlled manually and by autonomous navigation when given a target point. An extended Kalman filter is utilized for sensor measurement correction for more precise navigation. The proposed method is verified through a simulation.

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

자율작업용 원격운용잠수정의 추진 특성에 관한 실험 연구 (Experimental Study on Propulsion Characteristic of Autonomous Intervention ROV)

  • 여태경;이윤건;채준보;윤석민;이영준
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.454-461
    • /
    • 2019
  • In autonomous interventions using an underwater vehicle with a manipulator, grasping based on target detection and recognition is one of the core technologies. To complete an autonomous grasping task, the vehicle body approaches the target closely and then holds it through operating the end-effector of the manipulator, while the vehicle maintains its position and attitude without unstable motion. For vehicle motion control, it is very important to identify the hydrodynamic parameters of the underwater vehicle, including the propulsion force. This study examined the propulsion characteristics of the autonomous intervention ROV developed by KRISO, because there is a difference between the real exerted force and the expected force. First, the mapping between the input signal and thrusting force for each underwater thruster was obtained through a water tank experiment. Next, the real propulsion forces and moments of the ROV exerted by thrusting forces were directly measured using an F/T (force/torque) sensor attached to the ROV. Finally, the differences between the measured and expected values were confirmed.

수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어 (Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing)

  • 주문갑
    • 대한임베디드공학회논문지
    • /
    • 제14권1호
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.

가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획 (Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle)

  • 박성국;이지홍;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

An Improved Guidance Algorithm for Smooth Transition at Way-Points in 3D Space for Autonomous Underwater Vehicles

  • Subramanian, Saravanakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.139-150
    • /
    • 2012
  • This paper presents an improved guidance algorithm for autonomous underwater vehicles (AUV) in 3D space for generating smoother vehicle turn during the course change at the way-points. The way-point guidance by the line-of-sight (LOS) method has been modified for correcting the reference angles to achieve minimal calculation and smoother transition at the way-points. The algorithm has two phases in which the first phase brings the vehicle to converge to a distance threshold point on the line segment connecting the first two way-points and the next phase generates an angular path with smoother transition at the way-points. Then the desired angles are calculated from the reference and correction angles. The path points are regularly parameterized in the spherical coordinates and mapped to the Cartesian coordinates. The proposed algorithm is found to be simple and can be used for real time implementation. The details of the algorithm and simulation results are presented.

퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어 (Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling)

  • 박랑은;황은주;이희진;박민용
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

자율무인잠수정의 자세계측장치의 개발 (Development of Motion Reference Unit for Autonomous Underwater Vehicle)

  • 김도현;오준호
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.101-108
    • /
    • 1998
  • This paper concerns the navigation algorithm of motion reference unit (MRU) for autonomous underwater vehicle (AUV) We apply the strapdown navigation system using middle level inertial sensors. But, because the MRU consists of inertial sensors, the values of AUV motion calculated by navigation computer are increased by drift property of inertial sensors. Therefore, we propose the attitude algorithm using switching method according to the motion of AUV From this algorithm, the drift terms are eliminated effectively for roll and pitch. But, another device is required for yaw angle.

  • PDF

Controller design for an autonomous underwater vehicle using nonlinear observers

  • Negahdaripour, Shahriar;Cho, So-Hyung;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.16-27
    • /
    • 2011
  • The depth and heading control of an autonomous underwater vehicle (AUV) are considered to follow the predetermined depth and heading angle. The proposed control algorithm was based on a sliding mode control, using estimated hydrodynamic coefficients. The hydrodynamic coefficients were estimated employing conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. Using the estimated coefficients, a sliding mode controller was constructed for a combined diving and steering maneuver. The simulated results of the proposed control system were compared with those of a control system that employed true coefficients. This paper demonstrated the proposed control system, and discusses the mechanisms that make the system stable and accurately follow the desired depth and heading angle in the presence of parameter uncertainty.

자율무인잠수정의 지형참조항법 연구 (Terrain Referenced Navigation for Autonomous Underwater Vehicles)

  • 목성훈;방효충;권재현;유명종
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.