Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2019.04.008

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles  

Huang, Hai (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
Zhou, Zexing (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
Li, Hongwei (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
Zhou, Hao (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
Xu, Yang (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.12, no.1, 2020 , pp. 1-10 More about this Journal
Abstract
This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.
Keywords
CFD; Hydrodynamic coefficients; Circulating water channel; Side wall effect; Struts effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Feldman, J.P., 1979. Dtnsrdc revised standard submarine equations of motion. In: Poemes Et Legendes Kommentar. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.847.5301&rep=rep1&type=pdf.
2 Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. https://doi.org/10.1002/9781119994138.
3 Mansoorzadeh, S., Javanmard, E., 2014. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (auv) using computational and experimental fluid dynamics methods. J. Fluids Struct. 51, 161-171. http://www.sciencedirect.com/science/article/pii/S0889974614001856. https://doi.org/10.1016/j.jfluidstructs.2014.09.001.   DOI
4 Maximiano, A., Vaz, G., Scharnke, J., 2017. Cfd Verification and Validation Study for a Captive Bullet Entry in Calm Water. V001T01A006. https://doi.org/10.1115/OMAE2017-61666.
5 Nouri, N.M., Mostafapour, K., Hassanpour, S.H., 2016. Cfd modeling of wing and body of an auv for estimation of hydrodynamic coefficients. J. Appl. Fluid Mech. 9, 2717-2729. ://WOS:000386884200008.   DOI
6 Hirt, C., Nichols, B., 1981. Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201-225. http://www.sciencedirect.com/science/article/pii/0021999181901455. https://doi.org/10.1016/0021-9991(81) 90145-5.   DOI
7 Gerber, A.G., 2006. Ansys cfx-10 rans normal force predictions for the series 58 model 4621 unappended axisymmetric submarine hull in translation. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc57/p527222.pdf.
8 Gertler, M., Hagen, G.R., 1967. Standard Equations of Motion for Submarine simulation. https://trid.trb.org/view/159227.
9 Guilmineau, E., Deng, G.B., Leroyer, A., Queutey, P., Visonneau, M., Wackers, J., 2018. Numerical simulations for the wake prediction of a marine propeller in straight-ahead ow and oblique ow. J. Fluids Eng. 140, 021111-021111-11. https://doi.org/10.1115/1.4039377.
10 Humphreys, D., 1981. Dynamics and hydrodynamics of ocean vehicles. Oceans 81, 88-91. https://doi.org/10.1109/OCEANS.1981.1151683.   DOI
11 Prestero, T., 2001b. Development of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), vol. 1, pp. 450-455 vol. 1.
12 O'Brien, J., Young, T., Early, J., Griffin, P., 2018. An assessment of commercial cfd turbulence models for near wake hawt modelling. J. Wind Eng. Ind. Aerodyn. 176, 32-53. http://www.sciencedirect.com/science/article/pii/S016761051730716X. https://doi.org/10.1016/j.jweia.2018.03.001.   DOI
13 Polis, C., Ranmuthugala, S., Du_y, J., Renilson, M., 2013. Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface, pp. 1-11. https://search.informit.com.au/documentSummary; dn=385675055708089;res=IELENG.
14 Prestero, T., 2001a. Development of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), vol. 1, pp. 450-455. https://doi.org/10.1109/OCEANS.2001.968766 vol. 1.   DOI
15 Renilson, M., 2015. Submarine Hydrodynamics. Springer International Publishing. https://doi.org/10.1007/978-3-319-79057-2.
16 Bohm, C., Graf, K., 2014. Advancements in free surface ranse simulations for sailing yacht applications. Ocean Eng. 90, 11-20. http://www.sciencedirect.com/science/article/pii/S0029801814002510. https://doi.org/10.1016/j.oceaneng. 2014.06.038 (Innovation in High Performance Sailing Yachts - INNOVSAIL.).   DOI
17 Kim, J., Kim, K., Choi, H.S., Seong, W., Lee, K.-Y., 2002. Estimation of hydrodynamic coefficients for an auv using nonlinear observers. IEEE J. Ocean. Eng. 27, 830-840. https://doi.org/10.1109/JOE.2002.805098.   DOI
18 Kim, S.E., Rhee, B.J., Miller, R.W., 2013. Anatomy of turbulent ow around darpa suboff body in a turning maneuver using high-fidelity rans computations. Int. Shipbuild. Prog. 60, 207-231. https://doi.org/10.3233/ISP-130100. https://content.iospress.com/download/international-shipbuilding-progress/isp100?id=international-shipbuilding-progress%2Fisp100.   DOI
19 Kim, H., Ranmuthugala, D., Leong, Z.Q., Chin, C., 2018. Six-dof simulations of an underwater vehicle undergoing straight line and steady turning manoeuvers. Ocean Eng. 150, 102-112. http://www.sciencedirect.com/science/article/pii/S0029801817307862. https://doi.org/10.1016/j.oceaneng.2017.12.048.   DOI
20 CD-adapco, S., 2015. Star-ccm+ User Guide Version 10.04.
21 Yang, R., Clement, B., Mansour, A., Li, M., Wu, N., 2015. Modeling of a complexshaped underwater vehicle for robust control scheme. J. Intell. Robot. Syst. 80, 491-506. https://doi.org/10.1007/s10846-015-0186-2.   DOI
22 Kumar, M., Subramanian, V.A., 2007. A numerical and experimental study on tank wall influences in drag estimation. Ocean Eng. 34, 192-205. https://doi.org/10.1016/j.oceaneng.2005.10.025.://WOS:000243037500017.   DOI
23 Shen, Z., Wan, D., Carrica, P.M., 2015. Dynamic overset grids in openfoam with application to kcs self-propulsion and maneuvering. Ocean Eng. 108, 287-306. http://www.sciencedirect.com/science/article/pii/S0029801815003480. https://doi.org/10.1016/j.oceaneng.2015.07.035.   DOI
24 STERN, F., 1999. Verification and validation of cfd simulations. IIHR Report. https://ci.nii.ac.jp/naid/10009847536/en/.
25 White, F.M., 2005. Viscous Fluid Flows, vol. 20.
26 Wu, L., Li, Y., Su, S., Yan, P., Qin, Y., 2014. Hydrodynamic analysis of auv underwater docking with a coneshaped dock under ocean currents. Ocean Eng. 85, 110-126. http://www.sciencedirect.com/science/article/pii/S0029801814001619. https://doi.org/10.1016/j.oceaneng.2014.04.022.   DOI
27 Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H., 2015a. Quasi-static analysis of the hydrodynamic interaction effects on an autonomous underwater vehicle operating in proximity to a moving submarine. Ocean Eng. 106, 175-188. http://www.sciencedirect.com/science/article/pii/S0029801815002954. https://doi.org/10.1016/j.oceaneng.2015.06.052.   DOI
28 Triantafyllou, M.S., 2004. 13.49 Maneuvering and Control of Surface and Underwater Vehicles fall 2004. http://hdl.handle.net/1721.1/36835.
29 Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H.D., 2015b. Rans-based cfd prediction of the hydrodynamic coefficients of darpa suboff geometry in straight-line and rotating arm manoeuvers. Int. J. Mar. Eng. 157, 41-51. https://doi.org/10.3940/rina.ijme.2015.a1.308.://WOS:000370998100004.
30 Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H.D.A.1., Liu, H., Ma, N., Gu, X., 2017. Calculation of the hydrodynamic forces of ship model oblique towing test in circulating water channel by considering side wall effect correction. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univ. 51, 142-149. https://doi.org/10.16183/j.cnki.jsjtu.2017.02.003.   DOI