• 제목/요약/키워드: Autonomous Underwater Vehicle

검색결과 216건 처리시간 0.029초

A Study on the Structural Design and Analysis of a Deep-sea Unmanned Underwater Vehicle

  • 정태환
    • 한국해양공학회지
    • /
    • 제20권3호
    • /
    • pp.7-14
    • /
    • 2006
  • This paper discusses the structural design and analysis of a 6,000 meters depth-rated capable deep-sea unmanned underwater vehicle (UUV) system. The UUV system is currently under development by Maritime and Ocean Engineering Research Institute(MOERI), Korea Ocean Research and Development Institute (KORDI). The UUV system is composed of three vehicles - a Remotely Operated Vehicle (ROV), an Autonomous Underwater Vehicle (AUV) and a Launcher - which include underwater equipment. The dry weight of the system exceeds 3 tons hence it is necessary to carry out the optimal design of structural system to ensure the minimum weight and sufficient space within the frame for the convenient use of the embedded equipments. In this paper, therefore, the structural design and analysis of the ROV and launcher frame system were carried out, using the optimizing process. The cylindrical pressure vessels for the ROV were designed to resist the extreme pressure of 600 bars, based on the finite element analysis. The collapse pressure for the cylindrical pressure vessels was also checked through a theoretical analysis.

소형 자율 수중 운동체의 비연성 제어기 설계 및 HILS 기법을 이용한 성능 평가 (Decoupled Controller Design of Small Autonomous Underwater Vehicle and Performance Test using HILS)

  • 현철
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.130-137
    • /
    • 2013
  • In this paper, decoupled controller design for Autonomous Underwater Vehicle(AUV) and its simulated performance test results and Hardware In the Loop Simulation(HILS) results are presented. Control system design is done using the PD control scheme. Stability analysis and step response of closed loop system under uncertain parameter condition are also presented. The results of full coupled nonlinear model simulation show the well applicability of the designed controller. From the results of HILS, we can verify performance of real time processing and implemented hardware for AUV.

비선형 무인잠수정을 위한 슬라이딩 모우드 조종기 설계 및 실험적 고찰 (Design and Experimental Evaluation of Sliding Mode Controller Nonlinear Autonomous Underwater Vehicle)

  • ;서주로;서영태
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.11-18
    • /
    • 1992
  • 비선형성 및 측정할 수 없는 외란에 영향을 받은 무인잠수정의 깊이 조종을 위한 슬라이딩 모우드 조종기를 설계하였다. 먼저, 성형화 된 운동방정식을 기초로 하여 슬라이딩 표면계수를 수치행석으로 최적화 시켰으며, 이 설계된 슬라이딩 표면을 비선형 운동방정식에 적용하여, 그 특성을 고찰하었다. 마지막으로, 용이하게 설계된 슬라이딩 모우드 조종기를 비선형성과 외란을 갖는 NPS(Naval postgraduate School) 형태의 무인잠수정에 적용하여 얻어진 실험치의 동적 특성을 통해 슬라이딩 모우드의 강인성을 확인하였다.

  • PDF

웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계 (Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network)

  • 서경철;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

Controller Design for an Autonomous Underwater Vehicle Using Estimated Hydrodynamic Coefficients

  • 김준영
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.7-17
    • /
    • 2006
  • Depth and heading control of an AUV are considered to follow the predetermined depth and heading angle. The proposed control algorithm is designed. based on a sliding mode control using estimated hydrodynamic coefficients. The hydrodynamic coefficients are estimated with conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. By using the estimated coefficients, a sliding mode controller is constructed for the combined diving and steering maneuver. The simulation results of the proposed control system are compared with those of control system with true coefficients. This paper demonstrates the proposed control system, discusses the mechanisms that make the system stable and follows the desired depth and heading angle, accurately, in the presence of parameter uncertainty.

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

심해 자율 무인잠수정(AUV)의 내압선체 설계 최적화 (Design Optimization of Pressure Vessel of Small Autonomous Underwater Vehicle)

  • 정태환;노인식;이판묵;이종무;임용곤
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents the optimum design of cylindrical shell under external pressure loading. Two kinds of material, Al7075-T6, Ti-6Al-4V, are considered. For each material, the design variable is a thickness of the unstiffened parallel middle body shell, and the state variable, constraint, is hoop stress and the object .function is total weight of the cylindrical shell. Optimization is performed by conventional FE Program, ANSYS. In addition, buckling analysis is performed for the middle body of the cylindrical shell. Finally, we calculates the payload of the cylindrical shell to keep neutral buoyancy with optimized thickness in deep-sea applications.

자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구 (A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network)

  • 김병수;박상수;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF

강인추적 제어를 이용한 자율 무인 잠수정의 심도제어 (Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control)

  • 채창현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.