• 제목/요약/키워드: Autonomous Underwater Vehicle(AUV)

검색결과 147건 처리시간 0.029초

Implementation of a distributed Control System for Autonomous Underwater Vehicle with VARIVEC Propeller

  • Nagashima, Yutaka;Ishimatsu, Takakazu;Mian, Jamal-Tariq
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.9-12
    • /
    • 1999
  • This paper presents the development of a control architecture for the autonomous underwater vehicle (AUV) with VARIVEC (variable vector) propeller. Moreover this paper also describes the new technique of controlling the servomotors using the Field Programmable Gate Array (FPGA). The AUVs are being currently used fur various work assignments. For the daily measuring task, conventional AUV are too large and too heavy. A small AUV will be necessary for efficient exploration and investigation of a wide range of a sea. AUVs are in the phase of research and development at present and there are still many problems to be solved such as power resources and underwater data transmission. Further, another important task is to make them smaller and lighter for excellent maneuverability and low power. Our goal is to develop a compact and light AUV having the intelligent capabilities. We employed the VARIVEC propeller system utilizing the radio control helicopter elements, which are swash plate and DC servomotors. The VARIVEC propeller can generate six components including thrust, lateral force and moment by changing periodically the blade angle of the propeller during one revolution. It is possible to reduce the number of propellers, mechanism and hence power sources. Our control tests were carried out in an anechoic tank which suppress the reflecting effects of the wall surface. We tested the developed AUV with required performance. Experimental results indicate the effectiveness of our approach. Control of VARIVEC propeller was realized without any difficulty.

  • PDF

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권2호
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

자율무인잠수정 테스트베드 이심이의 개발과 수조시험 (Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI')

  • 전봉환;박진영;이판묵;이필엽;오준호
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹 (Underwater Docking of an AUV Using a Visual Servo Controller)

  • 이판묵;전봉환;이종무
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

소형 자율 수중 운동체의 비연성 제어기 설계 및 HILS 기법을 이용한 성능 평가 (Decoupled Controller Design of Small Autonomous Underwater Vehicle and Performance Test using HILS)

  • 현철
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.130-137
    • /
    • 2013
  • In this paper, decoupled controller design for Autonomous Underwater Vehicle(AUV) and its simulated performance test results and Hardware In the Loop Simulation(HILS) results are presented. Control system design is done using the PD control scheme. Stability analysis and step response of closed loop system under uncertain parameter condition are also presented. The results of full coupled nonlinear model simulation show the well applicability of the designed controller. From the results of HILS, we can verify performance of real time processing and implemented hardware for AUV.

자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구 (A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network)

  • 김병수;박상수;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF

강인추적 제어를 이용한 자율 무인 잠수정의 심도제어 (Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control)

  • 채창현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.

개방형 제어 플랫폼 기반 호버링형 무인잠수정 테스트베드 설계 및 성능평가 (Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform)

  • 최재원;하태규;;유창호;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.489-497
    • /
    • 2010
  • This paper presents the design of hardware platform, which is a test bed for the navigation system and hovering type AUV (Autonomous Underwater Vehicle) under the OCP (Open Control Platform). The developed AUV test bed consists of two hulls, four thrusters, and the navigation system which uses a SBC2440II with IMU (Inertial Measurement Unit). And the SMC (Sliding Mode Control) is chosen for the diving and steering control of the AUV. This paper uses ACE/TAO RTEC (Real-Time Event Channel) as a middleware platform in order to control and communicate in the developed AUV test bed. In this paper, two computers are used and each of them is dedicated for the specific purpose, the first computer is used as the SMC module and the middleware platform for the ACE/TAO RTEC and the second computer is used for the sensor controller. We analyze the performance of the AUV test bed under the OCP.

무인잠수정의 LQR 제어기 설계 (An LQR Controller for Autonomous Underwater Vehicle)

  • 배설봉;신동협;권순태;주문갑
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.132-137
    • /
    • 2014
  • In this paper, An LQR controller is proposed for way-point tracking of AUV (Autonomous Underwater Vehicle). The LQR controller aims at tracking a series of way-points which operator registers arbitrarily in advance. It consists of a depth controller and a steering controller and AUV's surge speed is assumed varying to consider the dynamic environment of the underwater. In order to show the performance, a conventional state feedback controller is compared with the proposed controller by the simulation using Matlab/Simulink. The parameters of AUV developed by the author's laboratory are used. In the simulation, we verify that the LQR controller can track all the way-points within 1 m error range under the varying surge speed, which proves the robustness of the LQR controller.