• Title/Summary/Keyword: Autonomous Flight

Search Result 158, Processing Time 0.03 seconds

A Formation Guidance Law Design Based on Relative-Range Information for Swam Flight (군집비행을 위한 상대 거리정보 기반의 편대 유도기법 설계)

  • Kim, Sung-Hwan;Jo, Sung-Beom;Park, Sang-Hyuk;Kim, Do-Wan;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • In this paper, a formation guidance method for UAVs (Unmanned Aerial Vehicles) to simulate the formation flight of birds proposed. The proposed method solves all issues of approaching for formation, formation keeping, and scarce chance to be collided with each UAV during formation process. Also, we design the feedforward controller to compensate the change of speed and heading for maneuvering of the leader UAV and the feedback controller to consider the response lag of the system. The stability and performance of the proposed controller is verified via numerical simulations of the full 6-Dof model of UAV.

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

Measurement of Multi Conflict Avoidance for Free flight Efficiency (자유비행 다중 충돌회피 효율성 측정 연구)

  • Lee, Dae-Yong;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In this paper, study the substantial issues which occurs upon free flight environment by performing separation assurance under multiple conflict(over 3 Aircraft), recovery en route under the terms of time constrains and fixed way point after the conflict avoidance, correlations between conflict detection distance and separation assurance by utilizing Autonomous flight algorithm. Result of this experiment demonstrates that the extension of detection distance is advantageous to solution of separation assurance and enhancing of flight efficiency, choose to maneuver by applying time constrain terms and fixed way point according to the situation of conflict prediction in case of recovery maneuver after the conflict avoidance. And separation assurance can be solved by applying 2 degrees or more of bank angle. When choosing the optimal bank angle could be drastically improved flight efficiency.

A Research of the Flow-Field Measurement Above the Flight Deck on LHP by PIV System (입자영상유속계를 이용한 대형수송함(LPH) 갑판 상부의 유동장 측정 연구)

  • Shim, Hojoon;Chung, Jindeog;Cho, Taehwan;Lee, Seunghoon;Song, Gisu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.225-234
    • /
    • 2022
  • The flow field measurement above whole area of the flight deck on 'Landing Platform Helicopter (LPH)' was performed by using PIV system in wind tunnel. In various heading angle conditions (0deg, -30deg, -45deg, -60deg, -75deg and ±90deg), the velocity fields such as U velocity & V velocity were measured at three different height above flight deck. Due to the geometrical characteristics of several bodies like deck, crane and super-structure, various vortex were generated. When the heading angle is 0deg, the deck edge vortex by flight deck and massive separation by super-structure were clearly observed by visualization with smoke and PIV, respectively. In other heading angles, the acceleration of flow in space between crane and super-structure were detected. And area with flow separation by super-structure is directly related to the heading angle of vessel.

Autonomous Aero-Robot and Disaster Response

  • Inoue, Koichi;Nakanishi, Hiroaki
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • After a not-widely-known fact is revealed that Japan is a leading country in production and use of industrial unmanned helicopters, a kind of UAV. The voice command system and the autonomous flight control system with a variety of control algorithms including neural network, robust and adaptive control that have been developed in collaboration between Kyoto University and Yamaha Motor Co., and funded by the Ministry of Education and Science of Japan are described in some detail. Both already-proven and promising future applications of the autonomous unmanned helicopters are given.

  • PDF

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Editorial for Vol. 31, No. 2 (편집자 주: 31권 2호)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.2
    • /
    • pp.31-32
    • /
    • 2021
  • In Vol. 31, No. 2, our journal prepared a review article, two original papers, and three case reports. First, autonomous systems are increasingly being introduced in aircraft systems. Therefore, it is crucial that flight crews are trained to adapt and handle these autonomous systems better. Consequently, we discussed crew resource management for handling autonomous systems. The fatigue of aviation workers is one of the biggest threats to aviation safety. Therefore, we analyzed the degree of fatigue in commercial aircraft pilots and evaluated the relationship between fatigue and their workload and the effect of fatigue on sleep. Since obesity has a significant impact on the health of aviation workers, we also comparatively analyzed the prevalence of obesity in Korea and Japan based on the data from the National Health and Nutrition Examination Survey. We defined cases that are difficult for aviation medical examiners to evaluate. This issue included cases of peripheral dizziness and tinnitus, cases of atopic dermatitis treated with biological agents, and cases of malignant tumors.