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Abstract:

After a not-widely-known fact is revealed that Japan is a leading country in production and use of
industrial unmanned helicopters, a kind of UAV. The voice command system and the autonomous flight
control system with a variety of control algorithms including neural network, robust and adaptive control
that have been developed in collaboration between Kyoto University and Yamaha Motor Co., and funded
by the Ministry of Education and Science of Japan are described in some detail. Both already-proven and
promising future applications of the autonomous unmanned helicopters are given.

1. Introduction

Numerous studies to develop unmanned helicopters and their flight control systems have recently been
conducted in the United States, Europe and Japan. But it is not widely known that Japan is on the top in
production of unmanned helicopters, a type of UAV, for non-military uses. In Japan, about 1,500
unmanned helicopters have been produced and they have been used mainly for crop dusting in paddy
fields. Yamaha unmanned helicopters have established an overwhelming 80% share of this market.
Yamaha Motor Co. began developing industrial-use, unmanned helicopters in the 1980s. In 1990 they
delivered “R-50” the first unmanned helicopter with a 20kg effective load capacity for agricultural use,
such as crop dusting, chemical spray and pest control. To date, a total of 1,200 units of Yamaha unmanned
helicopter have been sold in Japan. Since then, these unmanned helicopters have become the focus of
attention as economical, environment-friendly next-generation agricultural devices that are now being
used primarily for crop dusting. For example, in the case of dusting rice paddies, an unmanned helicopter
can do the job in about 1/15th the time it takes by hands of an aging farmer [1].

At the first stage of the development, they already realized the difficuities of controlling unmanned
helicopters. Their target has been to develop an unmanned helicopter that could be operated easily by
everyone. They also started to develop control devices for unmanned helicopters at the same time. At the
initial stage of control system development, they developed altitude and direction control devices that
could enhance the stability of altitude and direction for flight performance. These devices consist of a
laser range sensor, an accelerometer and a geomagnetic azimuth sensor. A laser range sensor measures the

distance between ground and helicopter by counting the reflecting time of light. Since 1995 Yamaha



helicopters have mounted the attitude control devices called “Yamaha Attitude Control System (YACS)”,
which has three fiber optic rate gyros and three accelerometers. It greatly increases flight stability and
case of operation through thz use of flight pattern control models based on extensive flight analysis. With
YACS, ali the flight control elements including, rudder and elevation are subject to computer control that
provides constant adjustments according to the parameters of three different flight modes that the operator
can select from, according to the type of use. Thanks to this system, new operators with just a short period
of training can now master helicopter operation, which was previously considered a very difficult skill,
This in turn has succeeded in expanding the demand for these helicopters.

The latest model, named Yamaha Aero Robot “RMAX?”, made its debut in October of 1997, mounting a
specially developed horizontally opposed, liquid-cooled, 2-stroke, 246¢c engine rated at 21hp. This made
possible an effective load capacity of 30kg
at an operating weight of 64kg. See Fig. |
and Table 1 for details.

Taking an RMAX as the base-model, a
joint project to develop an autonomous
unmanned helicopter for use in case of
disaster prevention and  monitoring
purpose between Kyoto University and

Yamaha Motor Co. was stared in the year

2000, funded by the Ministry of Education g, | RMAX in Spraying Chemical over Paddy Field
and Science of Japan (3-year project with

the grant-in-aid of 30,600,000 JPY).

R50 RMAX

2. Autonomous Unmanned Helicopter Main Rotor

Diameter (mm) 3,070 3,115

In this section, equipments for our autonomous  Tail Rotor

unmanned helicopter, which is a modified version of Diameter (mm) 520 543
the RMAX, named Kyoto Univ. version. See Fig. 2. Complete helicopter
The helicopter equips an attitude sensor and a GPS Overall Length (mm) 3580 3630
sensor. The attitude sensor consists of a Overall Height (mm) 1,080 1,080
geomagnetic azimuth sensor, 3 gyros and Overall Width (mm) 700 720
accelerometers. To ensure the accuracy of  weight
measurement of position and velocity, a real time Empty (kg) (With Fuel) 47 64
kinematics type of differential GPS (RTK D-GPS) is Payload (kg) 20 30
installed. To improve the performance and reliability  gngine
of autonomous flight controllers, it is necessary to Displacement (cnm® ) 98 246
use more accurate states of the helicopter, such as Category Water cooled
the position, velocity, and attitude. Therefore Maximum Output (K'W) 2.8 15.4

GPS-INS integrated navigation system using the
extended Kalman filfter with 15 dimensions is Table 1. Specifications of R-50 and RMAX
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developed. The integrated navigation system can cancel the effect of the offset of gyros and
accelerometers and the effect of distance from the GPS antenna to the center of gravity respectively.

Data Modem

Controller
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Pentium3 650Mz
OS RT-Linux

Inertial Sensor (3 axis platform)
® (-Sensors
® Gyroscopes

Fig. 2 Modified RMAX (Kvoto Univ. Version)

Moreover, it is also able to compensate time delay in transmission of GPS measurement data. Much
computation is required for the integrated navigation system and for the neural network in the flight
control, so that a note PC is also equipped on the helicopter. Real time processing is required in the
computation, so that RT-Linux is used as the operation system. Because the Note PC and RT-Linux are
used, it becomes possible to reduce the total of the cost and time to develop flight control system. Fig. 3
shows the signal block diagram of the autonomous unmanned helicopter. In flight experiments, a Note PC,
of which CPU is Intel Pentium III 650MHz, is used and it has enough capability to perform computation

required in the flight control system. As the Fig. 3 shows, the flight control system consists of two
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Fig. 3 Block Diagram of Autonomous Flight Control System



feedback loops, the inner loop and the outer loop. The outer loop is the positioning and velocity controller,
which is computed by the Note PC. In our study, the outer loop controller is mainly discussed. The outer
controller sends a signal to “he inner loop as the desired attitude. In the inner loop, an attitude controller
was used for the helicopter to track the desired attitude. The attitude controller is fixed and it have already
programmed on the board computer. But outer controller can stop using the attitude controller, because
the attitude controller may not have enough performance. If the attitude controller was turned off, the
outer controller controls the helicopter directly. The flight simulator developed by Yamaha Motor Co. can
simulate the flight controlled by the flight control system described in Fig. 3. But any information about
the dynamics of the helicopter, such as aerodynamic coefficients, is not open to public, so that the flight
simulator was used only to check if the designed controller works or not. Even if a simulator can be used,
it is almost impossible to design effective controllers without knowing the dynamics of the controlled
object in the conventional design methods.

3. Advanced Voice Command Control System

In Japan, many unmanned helicopters are used for agricultural purposes, and they are controlled
remotely using PROPO. But controlling UAVs remotely needs the skill. For a novice operator, it is not
easy to control an UAV remotely, not only for agricultural purposes but also for many purposes. A
semi-autonomous flight mode of UAVs will be able to overcome such difficulty. We propose that a voice
command system is one of the most suitable command interfaces for the semi-autonomous flight mode
[2]. Since communication by voice is quite common for human, the voice command system can be used
very easily even by novice operators. Operators can give commands with their own voices and can know
the state of UAVs by voice messages issued by the voice command system.

In order to examine the effectiveness, we developed a voice command system for RMAX and
experiments using a flight RMAX
simulator of RMAX were

carried out as well as real

Operator
experimental flight tests. e

Fig. 4 is a conceptual figure, Yown Link B

which shows the voice Up Link N _ / '

command  system  is Lt{& Wt Rso3 AR Voice
‘t : @ <D <7 W

. -,
connected to the terminal :

S
computer of RMAX by L )
RS232C. To concentrate Base Station Voice Command System

3

on developing the interface Fig. 4 Advanced Voice Command Control System
of the wvoice command

system, a  commercial

software (IBM ViaVoice) was at first used as a speech-recognition part, which is vital to the whole voice
command system. The rate of recognition of a speech-recognition system had big influence on the whole
degree of satisfaction and surrounding noise had influence on the rate of recognition of the command. The
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ViaVoice was not satisfactory to our purpose. So we adopt the “Julius” developed in Kyoto Univ., as the
speech-recognition system, which results in the satisfactory recognition rate. For novice operators,
commands used in this system are very much simplified. For example, in order to make RMAX hover,
simply say, "hover".

Results of experiments were analyzed based on human interface design principles and they were
fed-back to improve the whole system. The results of interviews and questionnaires performed to the
subjects for the system show that the voice command system is well accepted for the semi-autonomous
flight of UAVs.

Moreover, it becomes clear that the function by which the operator can check the state of an UAV by a
voice message contributes to the improvement in operability and the achievement of the purpose greatly.
This system equipped only minimum functions for the navigation of RMAX, Therefore the function to
guide operator by voice messages should be improved for the degree of satisfaction and we are now

investigating in depth what kinds of functions are required.
4. Autonomous Flight Control System by Training a Neural Network

4.1 Neural network and training algorithm

Because a neural network can emulate any continuous function to any desired accuracy, numerous
studies on applying the neural network
to control engineering are conducted. Hidder layer

Fig. 5 shows a typical structure of a Tiput L er

multi-layered neural network. Among Digu lave:

training algorithms of neural networks,
the Back-Propagation algorithm is the
most famous. But the desired response,
which is called the teacher signal, is
necessary in the algorithm. Moreover
the Jacobian matrix of the system must
be computed in training algorithms H
based on gradient [3], so that it requires Fig. 5 Multi-layered Neural Network
an exact mathematical model of a

controlled object. It, however, is

difficult to obtain an exact model of UAVs, and knowledge of many experts is inevitable to construct the
model. Nevertheless, to develop a flight simulator of an UAV is very important because it can help to
reduce the total cost of developing UAV, especially of developing autonomous flight control systems. In
conventional methods, detail information about the dynamics of UAVs is necessary in developing
controllers, so that a designer of the autonomous flight control system of UAV must have integrated
knowledge. So it is difficult to develop autonomous flight controllers, therefore a method to design
control systems much easier is required. If controllers can be designed by use of a flight simulator without
knowing detail information about the UAYV, distributed knowledge can be used more effectively, so that



efficiency of development of autonomous flight control systems is much improved because a designer of
the flight controller does not need to know the detail of the dynamics of the UAV.

For the purpose, we proposed to use neural networks in designing controllers, and the proposed
training method can be built in any flight simulators without knowing almost anything about the
dynamics. The proposed training method is based on Powell's conjugate direction algorithm, which can
be applied to problems which include not-differentiable functions. Neither any derivatives nor the teacher
signal are not needed in training neural networks, therefore it is much suitable for developing controllers
by use of neural networks. Moreover in the training algorithm, any information about the controlled
object, such as state equation, is not required so that it can easily built in flight simulators of any UAVs.
Therefore various expert's knowledge can be easily and perfectly absorbed in the system, so that the
training algorithm is much effective in designing autonomous control systems of UAVs. In this study, a
flight simulator of RMAX is used. Although not all information about RMAX is open to public, our
training algorithm is built in the simulator very easily. Methods to design typical control systems, which
are useful in autonomous ﬂighi control of UAVs, are discussed in the following sections.

4.2 Neural network for feedback linearization in autonomous flight control

Consider a nonlinear system with n degrees of freedom in general form:

y=f(y y,u) (D

where y and y are the state variables and u is the control variable. U is a pseudo-control variables,

such that
U=f(y, y,u) )
If fis a known and invertible function with respect to control u, control u described as (3) can

linearize the map between control and output.
u=f"(y, »,U) ©)
If the pseudo-control is chosen as (4), the closed loop dynamics can be expressed as (5).

U=—K,(y—-d)-K,y @

y=-K,(y-d)-K,y (5)

In this section, to develop a method to design a controller for feedback linearization, it is assumed that
f s invertible but not known. A neural network is used as feedback linearizing transformation shown in

Fig. 6. But the block diagram shown in Fig. 6 cannot be used in training directly, so that the block
diagram shown in Fig. 7 is used in training the neural network. The performance index J described as

(6)
T
J=Y (0 ©)
t=0

is used for training, where e is an inversion error. Training is equivalent to minimization of the
performance index J. K, and K, are parameters that determine the response of UAVs, and
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K, =10 and K,=2.0 are used in training. After training is completed, the neural network can be
used as the controller for linearizing the dynamics of UAVs. Fig. 8 shows the response of RMAX
controlled by the trained neural network and it is shown linearizing transformation by the network is
successful.
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Fig. 6 Controlle linearization by neural Fig. 7 Block diagram for training a neural
network network

But modeling errors must remain, however, in any flight simulators. Therefore control systems must be
tolerable for the modeling error or can adapt it on-line. The neural network that is trained by the method
described above can be used together on-line training of another neural network easily, so that controllers
by which the modeling error is compensated can be developed easily. Experimental results of yaw control
of a small electrically powered helicopter are shown in Figs. 9 and 10. It is shown that the on-line training
can easily compensate modeling error and the effect of a wind, and it turns out that the hybrid controller
has excellent performance. Fig. 10 shows that the hybrid controller still has excellent performance, even
if the efficiency of the control is 50% reduced. The hybrid controller can be a fault tolerant control system.

Therefore it is shown that the proposed method can improve the reliability of the autonomous flight

controllers.
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) response of RMAX — . with on-line training
linear model(&snrcd response) 035 without on-line training
10 ‘ 03
3
E o025
9 g
I g 02
£y g ol
L ol
7 S go0s l
0
6L— . S 005 L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30
time(sec) time(sec)
Fig. 8 Altitude response controlled by Fig. 9 The effect of on-line training
a trained neural network (side wind blows at S sec.)

4.3 Training neural network for robust controller against stochastic uncertainties

Generally speaking, some uncertainties are inevitable in developing controllers, so that designing
robust control system becomes important. We had already proposed methods to design robust controllers
by use of neural networks [4, 5], but only deterministic uncertainties are considered in those methods. But
stochastic disturbance is also one of the most typical uncertainties, so that controllers must be designed to

reduce its influence on the performance [6]. Our purpose in this section is to develop the method to design
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a robust neural controller against stochastic wigmm on-line gg:g:gg::

disturbances. 024 linear model response - -
The most typical stochastic uncertainty (6) E-OJ

that exists in flight of UAVs is a wind, and time Boa4

series of wind speed and its direction belong to é_o S

stochastic process. The flight of an UAV is -

disturbed by a wind, so that a performance g-0.6

index of a sampled flight tecomes stochastic. -0.7

Training using a particular wind is quite danger 08 .

because the trained controller doesn't have 3 ‘t?me (Sec)ls 20

proper robustness. Any stochastic values cannot  jg_ 10 The effect of on-line training (efficiency of

be used as the index for training. Therefore a the rudder is decreased to 50%)

statistical value of the stochastic process is
suitable for the index for training. Even some statistical values, such as max or median, are not
differentiable, but our training algorithm can use not-differentiable values as the index in training. To

design robust controller against winds, we proposed to use a performance index described as (7),
1
L =;10g(E[ exp(2y- )] M

where J is a sampled index. If the performance index (7) can be expanded about ¥, we can obtain an

approximated index described as (8),
L=E[J]+y Var[J1+O(*) (8)

¥ 20 is a scalar parameter and it quantifies the robustness of the trained controller. ¥ is an induced
L,-gain from stochastic disturbances to reference outputs. From (8), it is shown that not only average but
variance are considered in this method. The bigger y is used in training, the smaller the variance of the
performance is, that is, the trained neural network has robustness against stochastic disturbances.
Therefore its robustness can be quantified by ¥ , and this is the most advantageous point of our method.

To confirm the effectiveness of the proposed method, it is assumed that only vertical wind exits and
horizontal wind does not exist in simulations. Altitude controliers of RMAX, which are nonlinear state
feedback controllers, are designed by use of neural networks. The sampled index J described as (9) is

used in training, where d is the desired altitude.

40sec 3 ,
J =3 (z)-dw) f +vi0) ©)
t=0
Average and variance of the sampled index J are shown in Fig. 11. The average indicates the
performance of the controller, and the variance indicates the extent of the influence of the disturbance,
therefore these values are very important parameters for robust controllers against stochastic disturbances.
Both the average and the variance of a neural network, which is trained without considering any wind, is
big. Therefore the network fails in reducing the influence of the wind, and the performance is not good

enough. But both average and variance of neural networks trained by the proposed method are small, so
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that Fig. 11 shows that neural
networks trained by the
proposed method have excellent 6000 .
robustness and performance.
Moreover, this figure shows that
a designer can perform the 4000
tradeoff between robustness and

7000

50040

Var(J)

rf b h K 3000 | Optimal Cur\troj . i
erformance 00sin, - ©
p . y choosing L4 ;aO.FJOS [
v.Quantified robustness against  zgg0 . et e

. ) 700 720 740 760 780 800 820 840
the stochastic disturbance is the £

most noteworthy property of the

Fig. 11 Average aud variance of the performance index
proposed method, and it can be

combined with training for deterministic uncertainties very easily, so that more excellent
training method will be brought.

4.4 Flight Experiments

5 -

In this section, results of flight experiments 4: . denin 3:2{%}
using the flight control system designed by a6l

the proposed methods are shown [7]. The zaa}

proposed method can be applied to design E; 42 ]
various kinds of controllers, such as velocity 55_ w0l

controllers, positioning controllers and so on. .| 1
Although we had already tested various 36}

controllers actually, only positioning control 34 . ) o

. . . . o . 3 3 » )
is demonstrated in this section because it is 3436 38 40 42 44 46 48 S0

important in many activities. In flight experiments, the four controllers, that is, elevator
controller, aileron controller, yaw controller, and altitude controller, are used, and each
controller is designed independently.

(1) Positioning Control in a Horizontal Plane
Fig. 12 shows the result of positioning
control in a horizontal plane. The

£-positiend )

programmed path is a square of 10 meters.
The helicopter is also controlled to keep the

dttude crronm

initial altitude and the initial direction. In o 2 1a s 705 i il e
Fig. 12 x and y axes mean the direct tmedsec)
forward and the right respectively. Only Fig. 12 Flight path in horizontal plane

controllers that were trained offline were

used in this experiment. The day of flight
experiments was very windy, but the

ultitude errortm}
<
(=]

helicopter was controlled with enough -

0 5 10 15 20 25 30 35 40

accuracy but there was some steady-state ime(see)

error. the cause will be as follows:

. . ig. 13 aldd roller
(1)The average of wind speed isn’t 0, Fig. 13 Results of altitude controllers

11



(2) Installation error angles of the main rotor, and

(3) Trim error.

Such steady-state error is not desirable, but it is difficult to remove only by the state feedback controller

that is trained offline.
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Fig. 14 changes of trim

(Controller [C])

(2) Altitude Control

trim offset

N W bk b N2
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time(sec)
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time(sec)

Fig. 15 Response to change of trim
(Controller [D])

To check the performance in hovering, results of altitude control by the four different controllers are

compared with.
[A] PD controller,

[B] Controller [A] + online training neural network,

[C] A neural network which is trained offline, and

[D] Controller [C] + online training neural network

To determine the PD gain in [A] and [B], the optimal gain is searched using the flight simulator by
try-and-errors. In the online training rule, sigma modification with dead zone is used. Fig. 13 shows the
results of each controller and it is proved that the performance of the controller is much improved by
adding online training controller. Moreover the neural network trained by the proposed method has good
performance and robustness even without the online training controller. To confirm the effectiveness of
the online training controller, the trim of collective was changed during the flight. This is the emulated

experiment to check if the online training controller can reduce the influence of the gust, failures and so

on. In Figs. 14 and 15, responses to the change of trim are shown. Because Controller [C] is only a state
feedback controller, the change of trim had a great influence on the altitude. But Fig. 15 shows that the
online training controller can make the influence very small.
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S. Applications

5. 1 Observation Flight at Erupting Volcanoes

At the end of March 2000, Mt. Usu, on Japan's northern island of Hokkaido, erupted. The surrounding
area was quickly declared a no-entry zone and several thousand local inhabitants were evacuated to
temporary housing that they occupied for several months, With the possibility of further volcanic activity
still strong, the government-established
field headquarters was continuing
observation and information gathering on
a full-time basis. Receiving ask for
cooperation from the Public Works
Research Institute of the Ministry of
Construction in observation operations in
the volcano's vicinity, Yamaha Motor Co.
sent a team to Mt. Usu and it was the first

time that the autonomous unmanned

helicopter was used to observe erupting
volcanoes. The field headquarters had

Fig. 16 Destroyed houses

been set up in tents at a position just

2.5km from the active crater of the

volcano. Fortunately, the air conditions were relatively calm during the actual observation flights and
there was little disturbance of the airwaves. Everything worked according to the plan. During three days,
the autonomous unmanned helicopter made six observation flights, filming the targeted areas and
successfully relaying the images back to the headquarters. See Fig. 16 for a sample photo. The result gave
us many clear, live images of changes in topography of the mountain and build-up of volcanic ash that
could not be seen by the manned helicopters or the Defense Forces' aerial photographs. In addition to
sending out these images, the unmanned helicopter has been proven valuable in a number of unexpected
ways, such as for dropping scales to actually measure the depth of volcanic ash and gravel build-up, an
important indicator for predicting dangerous mudslides.

Furthermore, the autonomous unmanned helicopter was used for observation of erupting Mt. Oyama on
Miyakejima Island, Tokyo, Japan, on February 2001. The autonomous unmanned helicopter was used
again to make estimates of the thickness of the mudslide layers. Also, an equipped gas sensor measured
densities of volcanic gas. The data gathered from these observation flights is expected to play an
important role in the future for studies concerning the construction of “landslide dams” designed to
prevent the spread of land/mudslide damage.

The autonomous unmanned helicopter has enabled to gather of previously unavailable data such as
low-flight observation images from the high-danger areas near the volcano.

5.2 Possible Future Applications
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(1) Disaster Prevention
Very recently the Minister of Education and Science of Japan launched “Special Project on Prevention

and Reduction of Losses caused by Earthquake in Megalopolises” and they solicited research proposals
from universities, research institutions and business firms. We, a joint team consists of Kyoto University
and Yamaha Motor, made a research proposal “Developing Intelligent Aero-robot for Disaster
Prevention” to the Ministry, and fortunately our proposal has been selected. In the four-year project, we
plan

(1) To develop an advanced and integrated navigation system by use of sensor fusion technique,

(2) To develop an advanced autonomous flight control system,

(3) To make risk and reliability analysis of the proposed intelligent aero-robot in rescue activities,

(4) To make basic research on the cooperation between robots on the land and aero-robots in the air.
(2) Humanitarian Detection and Removal of Anti-personnel Mines

The Minister of Education and Science of Japan launched vary lately another very interesting research

project on “Research and Development of Sensing and Access/Control Techniques witch supports
Humanitarian Detection and Removal of Anti-personnel Mines”. We, a team of two universities, two
research institutions and a firm, have proposed a research plan on “Development of Hybrid Minefield
Access System using All Terrain Unmanned Vehicles”, but at present we do not know if the proposal is
selected or not. In the proposal, we plan to develop a hybrid minefield access system using unmanned
vehicles and unmanned helicopters. The proposed project include

(1) Effective access to the minefield based on cooperative operation,

(2) Easy teleoperation with information fusion utilizing the helicopters and the vehicles, and

(3) Reliable infrastructure for mine marking and mapping using Intelligent Data Carriers (IDC).

5.3 Other Area of Possible Applications
The Japanese government and other industries have been interested in the operation of unmanned
helicopters. For example,
(1) Hokkaido Regional Development Bureau has already decided to buy an unmanned helicopter for
the observation role of volcanoes including Mt.Usu.
(2) The Japan Meteorological Agency has also decided to use unmanned helicopters for gas sampling
and putting measuring devices for earthquakes in dangerous sites.
(3) Japan Coast Guard is also contemplating their use for search and rescue operations.
(4) Electric power plant companies, which have many nuclear power plants all over Japan, are very
interested in unmanned helicopters to watch radioactivity accidentally released. Because there was

an unfortunate accident at a nuclear fuel processing plant in Tokai-mura in 1999.

6. Conclusions

After an introduction to the brief history on the production and use of unmanned helicopters in Japan,
the command and control systems for UAVs including unmanned helicopters are discussed in this paper.

It is shown that the voice command system is very suitable for the semi-autonomous flight mode of UAVs,
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and that even a novice operator can control UAVs easily. It is also pointed out that more investigation
from the viewpoint of the human interface, that is user-friendly interface, is needed before the technology
is widely accepted. A very convenient and effective method to design autonomous flight control systems
by use of neural networks and their training is described and some results obtained from the real fight
tests together with numerical results obtained from the flight simulator and from the simple indoor
experiments. The already-proven and possible-in-the-future applications of autonomous unmanned
helicopters mainly in the area of safety and disaster prevention are given,

We believe an unmanned helicopter has a lot of potential, because it can go in and perform operations
in areas too dangerous for humans. But in order to realize this potential we first have to increase the
reliability of the technologies. And eventually we would like to have a system that is so foolproof that
even people who know nothing about helicopter can fly it.

Acknowledgements

The authors would like to thank Mr. Akira
Sato and his excellent team in Yamaha
Motor Co., for his support in writing this
paper and  for  their  continuing
encouragement and support in our study of
the autonomous unmanned helicopter. The
authors also would like to extend our sincere
gratitude to the Ministry of Education and
Science for their grant-in-aids for the study,
without which the study might not be in
existence.

At last but not at least, for the authors to

express their sincere thanks to each

Fig. 17 RMAX Kyoto Univ. Version and Team KU and YM

members of the joint team of Kyoto Univ.
and Yamaha Motor Co., a photo taken at a
flight experimental test at Yamaha Test Flight Field is shown in Fig. 17.

References

{1] Sato: Research, Development and Civil Application of an Autonomous, unmanned Helicopter;
Proceedings of AHS International Forum 57, 2001

[2] H. Nakanishi, A. Sato and K. Inoue: Development of Voice Command System for an Unmanned
Helicopter; Proceedings of Human Interface Symposium 2002, Sapporo, 2002

[3] H. Nakanishi, T. Kohda and K. Inoue: A Design Method of Optimal Control Systems by Use of
Neural Network: Proceedings of the 1997 International Conference on Neural Networks, IEEE, 1997

[4] H. Nakanishi and K. Inoue: Design Methods of Robust Feedback Controllers by Use of Neural

15



(5]

(6]

[7]

Networks; Proceedings of the International ICSC/IFAC Symposium on Neural Computation, 1998

H. Nakanishi and K. Inoue: Methods to Design Robust Controllers against Nonlinear and Multiple
Uncertainties by Use of Neural Networks; Proceedings of the 2000 International Joint Conference on
Neural Networks, 2000

H. Nakanishi and K. Inoue: Training Method of Robust Controllers against Stochastic Disturbance;
Proceedings of the 2001 International Joint Conference on Neural Networks, 2001

H. Nakanishi, H. Hashimoto, N. Hosokawa, A, Sato and K. Inoue: Autonomous Flight Control
System for Unmanned Helicopter Using Neural Networks; Proceedings of SICE, 2002

16



