• Title/Summary/Keyword: Autonomous Driving Control

Search Result 264, Processing Time 0.028 seconds

The road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability (자율차량 안정성을 위한 도로 거칠기 기반 제동압력 계산 시스템)

  • Son, Su-Rak;Lee, Byung-Kwan;Sim, Son-Kweon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.323-330
    • /
    • 2020
  • This paper proposes the road roughness based Braking Pressure Calculation System(BPCS) for an Autonomous Vehicle Stability. The system consists of an image normalization module that processes the front image of a vehicle to fit the input of the random forest, a Random Forest based Road Roughness Classification Module that distinguish the roughness of the road on which the vehicle is travelling by using the weather information and the front image of a vehicle as an input, and a brake pressure control module that modifies a friction coefficient applied to the vehicle according to the road roughness and determines the braking strength to maintain optimal driving according to a vehicle ahead. To verify the efficiency of the BPCS experiment was conducted with a random forest model. The result of the experiment shows that the accuracy of the random forest model was about 2% higher than that of the SVM, and that 7 features should be bagged to make an accurate random forest model. Therefore, the BPCS satisfies both real-time and accuracy in situations where the vehicle needs to brake.

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Implementation of Intelligent Home Robot based on Smartphones and Moving Devices (스마트폰과 이동형 디바이스에 기반한 지능형 가정용 로봇 구현)

  • Yang, Woocheol;Kim, Hajong;Park, Yongjin;Yu, Jeongho;Lim, Sanggul;Lee, Sangjun
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.446-451
    • /
    • 2013
  • As IT technology advances, the need for robots in various areas has been recognized. Robots that focused on the industrial market have been extended to household robots in everyday life. In fact, cleaning robots and security robots have been developed and sold. Most home robots, in spite of high price, their functions are limited. In this paper, we propose the intelligent home robot which is based on smartphones and moving devices to provide various services and voice control.

Study on the Drivers' Response Characteristics Using Spectral Analysis of Car Following Data (차량 추종자료의 파동해석을 통한 운전자 반응 특성 연구)

  • CHAE, Chandle;OH, Sei-Chang;KIM, Youngho;LEE, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.405-416
    • /
    • 2015
  • This paper developed a method analyze drivers' response characteristics using spectral analysis with car following data. Cross-correlation function and cross spectrum are produced by Fourier transform from speed fluctuations of leading vehicle and following vehicle during the designated time ${\tau}$. Based on the analysis data, a process to calculate the reaction time and stimulus-adaption index of following vehicle was developed and 170 cases of field data was applied. It was reported average of 0.654 and 2.091 seconds of stimulus-adaption index and reaction time respectively. In conclusion, the developed indexes might contribute to enhance vehicle control of autonomous vehicle more efficient and safer.

A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1 (국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구)

  • Kwon, Byeong-Heon;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots (온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발)

  • Lee, Hyun-Dong;Myung, Byung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.602-608
    • /
    • 2011
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. The NN for the online feedback-error learning can composed that the input layer consists of six units for the inputs $x_i$, i=1~6, the hidden layer consists of two hidden units for hidden outputs $o_j$, j=1~2, and the output layer consists of two units for the outputs ${\tau}_k$, k=1~2. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels. The initial q value was set to [0, 5, ${\pi}$].

Study on the line tracer robot applying the intellectual PID (지적 PID를 적용한 라인 트레이스 로봇에 관한 연구)

  • Lee, Dong-Heon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Choi, Myoung-Hoon;Lim, Jae-Jun;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.731-733
    • /
    • 2016
  • The primary goal of the line tracer is to accurately and quickly detect the movement up to the target position given by the sensor juhaengseon. It has been used in applications in various fields such as the current unmanned transport vehicles, laser cutting machine, autonomous mobile robots and unmanned driving is possible, and is held annually at various universities in the competition field with the possibility of great progress, depending on the application. However, there arises a large difference in running performance, depending on the hardware design and control. In this paper, improving the characteristics of the tracer line and characters to design a PID controller is to apply the point on ways of improving the properties of the system.

  • PDF

A Study on the Design of Relay Terminal Analysis Tool and Real-time Monitoring System for Driving Control Information of Snow-Removal Vehicles (제설차량의 운행정보 실시간 모니터링 시스템 및 중계단말 분석 도구 설계에 관한 연구)

  • Lee, Yang Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.713-718
    • /
    • 2014
  • This paper proposed a real-time monitoring system that can realize effective operation of snowplows each of the local autonomous entities secures to cope with disasters in Korea like a wintertime heavy snowfall and also can promptly cope with the spot facing a heavy snowfall disaster by doing real-time monitoring on the information of the snow-removal site and the mobility of the vehicles. Also, the study has designed a relay terminal analysis tool so that the proposed system can analyze all kinds of controlling information and diagnose the relay terminal effectively. The proposed system can realize effective and emergent coping with the situations of a heavy snowfall disaster through real-time routing trace as well as effective work progress within a short time by doing real-time monitoring on the information about the status of snow-removal work and vehicle controlling for snow-removal work as well as the location information of snow-removal vehicles in the situations of a heavy snowfall.

A Study on Position Matching Technique for 3D Building Model using Existing Spatial Data - Focusing on ICP Algorithm Implementation - (기구축 공간데이터를 활용한 3차원 건물모델의 위치정합 기법 연구 - ICP 알고리즘 구현 중심으로 -)

  • Lee, Jaehee;Lee, Insu;Kang, Jihun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.67-77
    • /
    • 2021
  • Spatial data is becoming very important as a medium that connects various data produced in smart cities, digital twins, autonomous driving, smart construction, and other applications. In addition, the rapid construction and update of spatial information is becoming a hot topic to satisfy the diverse needs of consumers in this field. This study developed a software prototype that can match the position of an image-based 3D building model produced without Ground Control Points using existing spatial data. As a result of applying this software to the test area, the 3D building model produced based on the image and the existing spatial data show a high positional matching rate, so that it can be widely used in applications requiring the latest 3D spatial data.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.