• Title/Summary/Keyword: Autonomic Nervous Response

Search Result 96, Processing Time 0.027 seconds

A STUDY ON THE TIME-VARYING POWER SPECTRUM ESTIMATION ALGORITHM USING TIME-FREQUENCY REPRESENTATION (시주파수 표현에 의한 시변파워스펙트럼 추정 알고리즘에 관한 연구)

  • Lee, Jeong-Whan;Lee, Joon-Young;Lee, Dong-Joon;Kim, Han-Soo;Jeon, Woo-Chul;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.991-993
    • /
    • 1999
  • This study proposed a new algorithm to assess autonomic function activity using Time-Frequency Representation(TFR). TFR is a way of describing the time-valiant energy of a signal. A discrete Wigner representation that is capable of filtering out any cross terms occuring in the Wigner-Ville Distribution(WVD) is used for time-variant energy distribution of heart rate variability(HRV) signals. And the marginal condition are evaluated to estimate power spectrum of HRV signals. The proposed algorithm showed that estimated power spectrum of HRV signals well describe the autonomic nerve system function and also showed the dynamics of autonomic nervous system response.

  • PDF

COMPARATIVE ANALYSIS OF PSYCHOPHYSIOLOGICAL REACTIVITY TO AUDITORY STIMULATION WITH AUTOMOBILE HORNS (자동차 경적소리에 대한 심리생리학적 반응 비교)

  • Estate Sokhadze
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.221-230
    • /
    • 1999
  • Automobile horn's psychoacoustic characteristic and significance as a anturalistic signal of danger makes it a valuable auditory stimulus to study such psychophysiological responses as startle, orienting and defense reactions. However, comparison and differentiation of physiological responses to commercially available horns is a complicated task due to small contrast of technical features of horns and influence of such processes as habituation on physiological outcome with increased number of auditory stimulation trials. In the study on 10 college students we performed comparative analysis of tonic and phasic reactivity of physiological responses mediated by autonomic nervous system in order to identify role of habituation and decrement of autonomic responsivity, as well as possibility o differentiate subjectively most and least preferred and subjectively more appropriate horns according to physiological manifestations. It was showed that electrodermal and cardiovascular reactivity have concurrent patterns of adaptation to repeated stimulation, namely skin conductance variables habituated, cardiac reactivity failed to show signs of habituation, while vascular component of response were facilitated demonstrating marked sensitization. Differentiation of Physiological responses to horns with respect to their subjective rating scores was possible, however electrodermal reactivity was effective only at the first block of trials, while phasic and tonic cardiovascular reactivity differentiate responses during whole course of experiment. There are discussed possible autonomic mechanisms involved in mediation of observed results.

  • PDF

The Effects of Dysmenorrhea on Clinical Competence in Early Stage Nurses (초보간호사의 월경곤란증이 임상수행능력에 미치는 영향)

  • Moon, Duck-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1020-1028
    • /
    • 2021
  • The purpose of this study was to investigate the factors affecting clinical competence on early stage nurse working in a general hospital. Data were collected by questionnaires on early stage nurses from september 11 to september 30, 2020. Data were analyzed by t-test, ANOVA, Scheffe test, Pearson correlation coefficients and multiple regression analysis, using SPSS WIN program. The degree of dysmenorrhea was 2.77 points, clinical competence was 3.44 points. Dysmenorrhea was negative correlated with clinical competence(r=-.226, p=.002). Response of autonomic nervous system was identified as factors influencing clinical competence(𝛽=-.261, p= .001). The model explained 22.1% of the variables. These results suggest that we need intervention education program for response of autonomic nervous system in order to improve the clinical competence of early stage nurses.

The Evaluation of Driver's Physiology Signal and Sensibility according to the Change of Speed and the Gap of Platoon on AHS (AHS에서 차량군의 속도와 거리 변화에 따른 운전자의 생체신호와 감성 평가)

  • Jeon, Yong-Uk;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.15-28
    • /
    • 2003
  • The one of the most important factors is the platoon design on developing AH3(Advanced Highway System), as it is related to traffic efficiency and drivers' safety. This study was evaluated that how much speed is comfortable for drivers and how long distance is appropriate for vehicular gap of platoon by measuring drivers' physiology signal and sensibility. A fixed-based AHS simulator was developed by using a real vehicle cockpit and the restructured part of Korean highway for human factors evaluation. The EEG(electroencephalogram), ECG (electrocardiogram) and GSR(Galvanic Skin Response) were measured for obtaining drivers' physiology signal according to the change of speed and gap. The brain wave(${\alpha},\;{\beta},\;{\delta},\;{\theta}$) by EEG, the response of the autonomic nervous system. the sympathetic and parasympathetic nervous system, by ECG, and relax-arousal situation by GSR were analyzed. The SD(Semantic Differential) method was also applied to evaluate drivers' sensibility by 5-grade evaluation scale with 96 adjectives. SSQ(Simulator Sickness Questionnaire) was used to measure the simulator sickness of pre and post driving, two times. As the results, drivers were comfortable with 120km/h speed of platoon and lam to 15m vehicular distance. The results of this study may differ from the adaption of the reality because of many parameters. However, the purpose of this study is show to significant results of the drivers' safety and the acceptability of human factors evaluation.

Effect of Aconitine upon Autonomic Nervous System in Isolated Rabbit Intestine (Aconitine이 가토(家兎)의 장관지배신경(腸管支配神經)에 미치는 영향(影響))

  • Lee, Chang Eop;Rhee, Young So;Chung, Soon Tong
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.2
    • /
    • pp.199-201
    • /
    • 1975
  • In order to investigate the effect of aconitine upon the parasympathetic innervation, the isolated rabbit duodenal preparation pretreated with atropine and tetrodotoxin were observed. The results obtained in this work were summerized as follows: 1. The excitatory response was evoked by the administration of aconitine ($100{\mu}g/ml$). 2. The contraction was blocked by the pretreatment with atropine ($10{\mu}g/ml$). 3. The contraction was completely blocked by the pretreatment with tetrodotoxin($10{\mu}g/ml$). These experimental evidences indicate that the excitatory response by aconitine is due to the parasympathetic nerves.

  • PDF

A Study of Autonomic Responses due to Vehicular Speed Changes (자동차 속도 변화에 따른 자율신경계의 반응 연구)

  • 김철중;민병찬;정순철;김상균;오지영;민병운;김유나
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.203-210
    • /
    • 1999
  • We report on some of the preliminary results of the physiological responses resulting from vehicular speed changes. Healthy human subjects (n=5) were studied for the experiments. We measured the physiological responses of the subjects such as Heart Rate Variability (HRV), Galvanic Skin Response (GSR), and skin temperature for day and night vehicular speed change experiments, respectively. Before and after the tasks, we carried out a self-report for acquiring correlation with experiment results. Mean heart rate variability (HRV) and amplitude of GSR and skin temperature were calculated for 3 minutes duration in each state. The analysis of the physiological measures of ANS activity revealed that vehicle speed change-based affective state evoked arousal response pattern featured by HR acceleration, decrease of skin temperature, and increase of GSR amplitude. The obtained results show that despite some differences observed between each state, overall physiological responses show that the activity of the sympathetic nervous system increases as a result of the increase of speed.

  • PDF

Relationship between Vestibuloocular Reflex and Autonomic Nerve Response in Adults (성인에서 전정안구반사를 이용한 평형감각과 자율신경반응의 관련성)

  • 김규겸;박현영;전희정;윤상대;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.237-242
    • /
    • 1999
  • The nature of the interactions between the vestibular and autonomic systems is complex and has not been fully defined. Vestibuloocular reflex induced by sinusoidal rotation and activity of the autonomic nerves in the heart were measured to investigate the interactions between the vestibular system and the autonomic nervous system in healthy adults. Eye movement induced by sinusoidal rotation of the whole body or optokinetic stimulation at 0.04 Hz was analyzed in gain, phase, and symmetry. EKG was measured during vestibular stimulation and analyzed in heart rate variability including mean R-R interval, standard deviation (SD) and coefficient of variance (CV) of R-R interval, and power spectrum of low frequency region (LF) and high frequency region (HF). Gain of eye movement was 0.65${\pm}$0.03 by ratatory stimulation, 0.70${\pm}$0.02 in optokinetic stimulation, 0.08${\pm}$0.02 in visual suppression, and 0.84${\pm}$0.04 in visual enhancement. In R-R interval, resting condition (control) was 0.82${\pm}$0.03 sec, and visual suppression showed significant increase and visual enhancement did significant decrease compared with control (p<0.01).CV was 0.06${\pm}$0.02 in control and visual enhancement increased significantly (p<0.05). In LF/HF control was 1.40${\pm}$0.23, which was not different from rotatory or optokinetic stimulation. But visual suppression decreased LF/HF significantly and visual enhancement increased significantly compared with control (p<0.01). These results suggest that degree of gain corresponds with LF/HF and increased gain in visual enhancement is deeply related to the activity of sympathetic nerves.

  • PDF

Evaluation of a Traffic Light System Focusing on Autonomic Nervous System Activity for Overcoming Yellow Signal Dilemma (황색신호 딜레마 극복을 위한 자율신경계 활성도 중심의 신호체계 평가)

  • Jo, Hyung-Seok;Kim, Kyu-Beom;Ahn, Seok-Huen;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • This study is aimed at investigating drivers' reactions to yellow signal dilemma situations as a result of the existing signal system, and developing a new signal system. A driver-centered coping model was developed through bio-signal analysis. The driver's physiological response in the existing signal system was observed, and the signal system was developed by applying intersection road driving conditions using a car graphic simulator. Participants were classified into a control group (existing signal system) and an experimental group for a new yellow signal system (new signal system). Based on the results, the emergence of parasympathetic nerves was higher in the experimental group than in the control group, where a statistically significant difference was observed (p < 0.05). The newly developed signal system appeared to cause tension among drivers; however, the sympathetic to parasympathetic nerve ratio was 6: 4, which could be interpreted as an ideal balance. We conclude that drivers can drive more stably if the coping signal system developed in this study is applied to the traffic system.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

"A study on the Time-Frequency Algorithm to estimate time-varying Power Spectrum of Heart Rate Variability Signals" (심박변동신호의 시변파워스펙트럼 추정을 위한 Time-Frequency 알고리즘에 관한연구)

  • Park, C.S.;Lee, J.W.;Lee, J.Y.;Kim, J.S.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.185-186
    • /
    • 1998
  • The discrete Wigner-distribution(DWD) was implemented for the time-frequency analysis of heart rate variability signals. The smoothed cross-DWD was used to estimate time-varying power spectrum. Spurious cross-terms were suppressed using a smoothing data window and a Gauss frequency window. The DWD is very easy to implement using the FFT algorithm. Experiment show that the DWD follows well the instantaneous changes of spectral content of heart rate variability signals, which characterize the dynamics of autonomic nervous system response.

  • PDF