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Abstract

We tested the feasibility of automated discrimination of patients with panic

disorder (PD) from healthy controls (HCs) based on multimodal physiological

responses using machine learning. Electrocardiogram (ECG), electrodermal

activity (EDA), respiration (RESP), and peripheral temperature (PT) of the par-

ticipants were measured during three experimental phases: rest, stress, and

recovery. Eleven physiological features were extracted from each phase and

used as input data. Logistic regression (LoR), k-nearest neighbor (KNN),

support vector machine (SVM), random forest (RF), and multilayer perceptron

(MLP) algorithms were implemented with nested cross-validation. Linear

regression analysis showed that ECG and PT features obtained in the stress

and recovery phases were significant predictors of PD. We achieved the high-

est accuracy (75.61%) with MLP using all 33 features. With the exception of

MLP, applying the significant predictors led to a higher accuracy than using

24 ECG features. These results suggest that combining multimodal physiologi-

cal signals measured during various states of autonomic arousal has the poten-

tial to differentiate patients with PD from HCs.
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1 | INTRODUCTION

Mental disorders are related to the dysfunctions of the
autonomic nervous system (ANS) [1–4]. Physiological sig-
nals, which have been used to assess ANS activity, have
attracted significant interest in the study of mental disor-
ders. For example, recent studies have used physiological
signals for the automated diagnosis of mental disorders.
The detection of major depressive disorders based on
machine learning has been performed using physiologi-
cal features extracted from electrocardiogram (ECG) and
electrodermal activity (EDA) signals [1–3]. Valenza and
others [4] used heart rate variability (HRV) parameters to
evaluate depressive states and predict mood changes in
patients with bipolar disorder. These studies focused on
the diagnosis of depressive disorders.

Panic disorder (PD) is one of the most common anxi-
ety disorders and is characterized by recurrent and unex-
pected panic attacks [5]. It can negatively affect the
personal and social lives of patients [6]. Although PD is
diagnosed following the guidelines provided by the Diag-
nostic and Statistical Manual of Mental Disorders, the
diagnosis primarily depends on clinical interviews and
subjective reports of symptoms by the patients [7–9]. In
addition, controlled studies on the psychological aspects
of PD have not been conducted extensively owing to
methodological limitations [10]. Hence, researchers have
been working to develop more reliable methods for diag-
nosing PD based on quantitative data, such as physiologi-
cal signals.

The clinical symptoms of PD include ANS distur-
bances, such as palpitations, tachycardia, sweating,
shaking, dyspnea, and chest pain [11]. In particular, PD
affects cardiac activity and increases the risk of cardio-
vascular morbidity and mortality. Patients with PD have
a high baseline heart rate (HR), periods of tachycardia
that coincide with panic symptoms [12, 13], and
reduced resting-state HRV, reflecting a decrease in
vagal output [14]. Previous studies on PD primarily
focused on changes in HRV. A meta-analysis [14] of
24 studies comparing patients with PD and controls
reported lower HRV and high-frequency (HF) power
and higher low-frequency (LF) power and LF/HF ratio
in patients with PD compared with controls [15–19].
However, some studies have demonstrated mixed
results, reporting lower HF power and LF/HF ratio in
patients with PD [19–22]. Kotianova and others
reported lower very low frequency (VLF) power during
baseline measurement and higher LF/HF ratio during
response to mental tasks in patients with PD compared
with controls [23].

These results suggest that it is important to include
physiological features other than HRV in the

investigation of abnormal changes in autonomic activity
in patients with PD. EDA parameters, such as skin con-
ductance level (SCL), reflect sympathetic nervous system
activity and are sensitive to changes in clinical autonomic
status [24]. Moreover, finger temperature (FT) represents
peripheral physiological response to anxiety [25]. Patients
with PD were found to have significantly higher HR and
SCL and significantly lower FT than healthy controls
(HCs) [25]. Respiration (RESP) has also been studied as a
physiological indicator of stress and anxiety [26, 27], and
respiration rate (RR) has been shown to increase as the
intensity of stress or anxiety increases [28]. Panic is char-
acterized by stress-induced autonomic sensations, and
the effects of experimentally induced psychosocial stress
on several ANS responses have been investigated. Previ-
ous studies involved the measurement of physiological
signals while patients were conducting experimental
tasks and demonstrated that patients with PD and gener-
alized anxiety disorder (GAD) have higher SCL than
patients with major depressive disorder [29, 30]. There-
fore, subjecting patients to stress in a laboratory setting
may aid the development of approaches for improving
the discriminative power of methods using physiological
features for detecting PD.

Based on these results of abnormal ANS activity in
patients with PD, previous studies used machine learning
algorithms to differentiate PD from other pathological
conditions or predict treatment outcomes. For example,
Na and others applied five algorithms to HRV data to dis-
criminate PD from other anxiety disorders [31]. Lueken
and others distinguished depressive comorbidity from PD
using functional magnetic resonance imaging (fMRI)
data and a tree ensemble classifier [32]. Sundermann and
others used a support vector machine (SVM) with fMRI
data to predict the response to cognitive behavioral ther-
apy in patients with PD and agoraphobia [33]. However,
the automated differentiation of patients with PD from
HCs using physiological signals has not been extensively
tested.

The aim of this study was to test the feasibility of the
automated discrimination of patients with PD from HCs
using machine learning approaches based on multimodal
physiological responses. To obtain physiological
responses, we used a psychophysiological profile (PPP), a
technique used to evaluate autonomic arousal and quan-
tify the level of individual stress reactivity, with the
expectation that inducing multiple alterations in the ANS
response would improve the performance of classifiers
[34]. The PPP comprised three continuous phases: rest,
stress presentation (cognitive or perceptual tasks), and
recovery from stress [34–37]. During the PPP phases, four
physiological signals were simultaneously measured:
ECG, EDA, RESP, and peripheral temperature (PT). A
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total of 33 physiological features—11 features from three
phases—were extracted and used as input data. First, we
statistically analyzed the extracted features to identify sig-
nificant predictors of PD. Subsequently, various machine
learning algorithms were applied to the input data to pre-
dict the PD and HC groups.

2 | EXPERIMENTAL METHODS

2.1 | Subjects

This study included 71 subjects [41 females, mean
age � standard deviation (SD), 42.3 � 14.39 years], con-
sisting of 39 HCs and 32 patients with PD. The patients
were enrolled between December 2015 and January 2017
and were recruited from the outpatient clinic of the
Depression Center of the Samsung Medical Center. They
were diagnosed with PD by a senior psychiatrist if they
met the DSM-IV criteria for PD and scored >7 points on
the Panic Disorder Severity Scale (PDSS) [38]. The exclu-
sion criteria were pregnancy, history of drug or alcohol
dependence, history of head trauma, serious risk of sui-
cide, personality disorder, severe somatic diseases, and
use of long-acting medications, including fluoxetine and
depot neuroleptics. Using general study advertisements,
healthy subjects with no history of psychiatric disease
and no family history of mood disorders were recruited
as the HC group. The study protocol was approved by the
Ethics Committee of the Samsung Medical Center, Seoul,
Korea (No. 2015-07-151), and the study was performed in
accordance with the relevant guidelines. Written
informed consent was obtained from all participants after
providing them an explanation of the experimental
procedures.

2.2 | Demographic data and clinical
measures

The study duration was 12 weeks for each subject
(Figure 1). Each subject completed five visits: baseline
and 2, 4, 8, and 12 weeks after the initial screening. All
subjects provided demographic data and completed
clinical measures. The demographic data included
age, sex, and years of education. The clinical measures
included the Hamilton Rating Scale for Anxiety
(HAM-A) [39] and PDSS [38]. These scales were evalu-
ated at the baseline visit and at the 12-week visit. We
also evaluated the subjects’ body mass index (BMI),
smoking habits, and alcohol consumption, which are
known to be associated with changes in ANS parame-
ters [40].

2.3 | Experimental design

The experimental protocol included PPP, one of the tech-
niques used for assessing the influence of autonomic
response on behavior. The PPP experiment is generally
divided into three continuous phases: rest, stress presen-
tation using cognitive or perceptual tasks, and recovery
[29]. Each phase lasts for 5 min. For stress presentation,
we used the mental arithmetic task, which involves the
continuous serial subtraction of a single-digit number,
7, from a three-digit number, 500, to gradually increase
the subjects’ mental load. During the experiment, physio-
logical signals, such as ECG, EDA, RESP, and PT, were
simultaneously measured. The psychophysiological
assessment was completed on five separate occasions dur-
ing the 12-week study period. Two investigator specialists
were trained to conduct the experiments. For each exper-
iment, only one subject was examined at a time by a spe-
cialist in the clinical laboratory. The experimental
procedures used in this study are shown in Figure 1.

2.4 | Physiological measures

Because ANS responses are easily affected by the sub-
ject’s physiological state, which is in turn affected by fac-
tors such as time of the day, mood, and rest state,
physiological signals were measured during working
hours. The experiment was conducted under standard
conditions in a sound-attenuated room at a temperature
of 23�C and humidity of 45%–55%. Prior to the experi-
ment, the subjects were instructed to sit comfortably in
an armchair with a headrest and not to speak or move
unless necessary while the devices for recording physio-
logical signals were set and calibrated. Physiological

F I GURE 1 Experimental procedure
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signals—ECG, EDA, RESP, and PT—were acquired using
the ProComp Infiniti system (SA7500, Thought Technol-
ogy, Canada). The sampling rate of all signals was
256 Hz. ECGs were recorded using an ECG-Flex/Pro sen-
sor (T9306M, Thought Technology). Three ECG elec-
trodes were placed on both forearms. The negative lead
was placed on the right forearm, whereas both the posi-
tive and ground leads were placed on the left forearm.
The ECG signal was passed through a 0.26-Hz to 30-Hz
band-pass filter. The EDA was recorded using SC-Flex/
Pro sensors (SA9309M, Thought Technology). A constant
electrical voltage of 0.5 V was applied between two dry
Ag/AgCl electrodes, which were strapped to the distal
phalanges of the index and middle fingers of the subject’s
nondominant hand. The RESP signal was measured
using a RESP-Flex/Pro sensor (SA9311M, Thought Tech-
nology), which was stretched around the subject’s chest
and measured the relative amount of chest expansion. To
measure the PT, a Temp-Flex/Pro sensor (SA9310M,
Thought Technology) was placed on the palmar side of
the ring finger of the subject’s nondominant hand. The
sensor can measure a temperature range of 10�C–45�C.

2.5 | Feature extraction

Physiological signals were analyzed using the BioGraph
Infiniti Software (Thought Technology), which also
amplified and digitized all signals. We used the middle
3-min segment after removing the first and last 1 min
from the 5-min recording of each phase (rest, stress, and
recovery). The features extracted from each signal are
presented in Table 1. Eight features were extracted from
the ECG signals. The R-peak to R-peak intervals (RRIs),
HR, SD of the RRIs (SDNN), root mean square of succes-
sive differences in the RRIs (RMSSD), and proportion of
successive RRIs differing by >50 ms (pNN50) were calcu-
lated based on time-domain analysis. The SDNN reflects
both sympathetic and parasympathetic activities, whereas
the RMSSD and pNN50 are sensitive to parasympathetic
modulation. We also evaluated power spectrum density

for the RRI data using a fast Fourier transform to extract
frequency-domain features (resampling method of the
RRI data is not available). The absolute powers in three
distinct bands, VLF (<0.04 Hz), LF (0.04 Hz–0.15 Hz),
and HF (0.15 Hz–0.4 Hz), were calculated. The relative
powers of the LF and HF bands were calculated as the
LF/HF ratio. The SCL was extracted from the EDA sig-
nals by averaging the data points in the 3-min segment.
The RR, which signified the number of breaths per
minute, was estimated by counting chest movements in
the RESP signals. The FT was evaluated by averaging the
3-min PT signals. Table 2 shows a sample of data from
one of the patients with PD.

2.6 | Statistical analysis

A maximum of 355 datasets were potentially available
(5 visits � 71 participants). However, due to participant
dropout, only 344 datasets were selected for analysis. The

TAB L E 1 Physiological features extracted from each signal

Signals

Features

Rest (res) Stress (str) Recovery (rec)

ECG SDNN, pNN50, RMSSD, VLF,
LF, HF, LF/HF ratio, HR

SDNN, pNN50, RMSSD, VLF,
LF, HF, LF/HF ratio, HR

SDNN, pNN50, RMSSD, VLF,
LF, HF, LF/HF ratio, HR

EDA SCL SCL SCL

RESP RR RR RR

PT FT FT FT

TABL E 2 Physiological features of a patient with PD (male,

23-year-old, first visit)

Features

Phases

Rest Stress Recovery

SDNN (ms) 81.74 92.74 65.05

pNN50 (%) 0.366 0.241 0.319

RMSSD (ms) 102.2 82.58 85.63

VLF (ms2) 505.9 326.8 134.0

LF (ms2) 704.2 1132 492.7

HF (ms2) 2316 972.9 680.4

LF/HF ratio 0.487 1.378 0.695

HR (bpm) 52.21 60.85 51.43

SCL (μs) 0.483 5.624 3.831

RR (per minute) 14.88 12.42 12.89

FT (�C) 33.78 33.91 33.88

Abbreviation: bpm, beats per minute.
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demographic data and clinical measures of the PD and
HC groups were compared using independent t-test and
chi-square test. Linear regression analysis was used to
determine the significant predictors of PD. A p-value of
<0.05 indicated statistical significance. All analyses were
performed using SPSS 22.0 (IBM, Armonk, NY, USA).

2.7 | Machine learning methods

Figure 2 shows an overview of the data processing pipe-
line. To classify the PD and HC groups based on physio-
logical features, five machine learning algorithms were
implemented: logistic regression (LoR), k-nearest neigh-
bor (KNN), SVM with radial basis function kernel, ran-
dom forest (RF), and multilayer perceptron (MLP)
[1, 41, 42]. Participants with missing visits were excluded
from the input data, resulting in a total of 335 datasets
from 67 participants (39 controls and 28 patients). The
input data were normalized: The mean was subtracted
from each data point, and the result was divided by SD.

To evaluate the performance of the classifiers, we
adopted a nested cross-validation (CV) approach, which
can reduce optimistic bias compared with simple CV
[43]. Nested CV has a subject-wise stratified 10-fold inner
loop nested in a leave-one-subject-out (LOSO) outer loop.
To prevent data leakage during CV, we adopted a
subject-wise, rather than sample-wise, data split [44].
LOSO was chosen as the CV method because it has been
demonstrated to perform well compared with other

methods, such as 10-fold and 5-fold CV, when the data
size is small (<100) [45]. In the outer loop, five datasets
from one subject were designated as the test set. Subject-
wise 10-fold CV was used for the remaining data (train-
ing and validation datasets) to optimize the hyperpara-
meters using a grid search approach. After the validation
and training datasets were split in the inner loop, we ran-
domly under-sampled the healthy subjects in the training
dataset. Most machine learning algorithms work best
when each class has the same number of samples; thus,
under-sampling was conducted using a subject-wise
approach to match the number of subjects in the HC and
PD groups in the training dataset to maximize the perfor-
mance of the classifiers. The optimal parameters were
those that resulted in the highest average accuracy over
the 10 folds. The final optimized model was built by
training with the training/validation dataset and the opti-
mal parameters. This model was subsequently applied to
the test dataset for performance evaluation. These pro-
cesses were repeated 67 times in the outer loop. To fur-
ther improve the estimation, the nested CV was repeated
10 times, and the results from all 10 repetitions were
averaged to obtain the final evaluation of the predictive
performance of each classifier. Accuracy, sensitivity,
specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and area under the curve (AUC)
were calculated and used as performance indices.

The following hyperparameters were optimized in the
10-fold inner loop: number of neighbors (odd numbers
from 3 to 21) for KNN; C (10�3, 10�2, 10�1, and 100) and
gamma (10�3, 10�2, 10�1, and 100) for SVM; number of
trees (1000 and 2000) and maximum number of features
(sqrt and none) for RF; and number of hidden layers
(2, 3, and 4) for MLP. In the MLP model, the binary
cross-entropy was optimized using the Adam optimiza-
tion algorithm, and a 20% dropout layer was added to
each of the fully connected layers before the output. Each
layer contained 1024 neurons.

A total of 33 features (11 features � 3 phases) were
used as the input data. Four different sets of input data
were used, and their results were compared: all 33 multi-
modal features; six significant predictors from the linear
regression analysis; 27 features, after excluding the six
significant features; and 24 HRV features, after excluding
the EDA, RESP, and temperature features. We computed
the mutual information (MI) between the features. MI
measures the dependency between two random variables
[46] and can be used for feature ranking. It represents the
change in the entropy of one variable from observing the
other variable and is zero if and only if the two variables
are independent. MI estimation was based on the KNN
distances method [47, 48]. All analyses were performed
using Python 3.7 and TensorFlow 2.3.

F I GURE 2 Overview of the data processing procedure. Nested

cross-validation was repeated 10 times.
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3 | EXPERIMENTAL RESULTS

3.1 | Demographic data and clinical
measures

Table 3 shows the descriptive statistics of the demo-
graphic data and clinical measures of the participants in
the PD and HC groups. There were no significant differ-
ences between the two groups in terms of age, sex, BMI,
smoking habits, and alcohol consumption. However, the
patients in the PD group had significantly more years of
education than those in the HC group. We also found sig-
nificant differences in the two psychiatric measures
between the two groups. The HAM-A and PDSS scores
were significantly higher in the PD group than in the HC
group. The mean HAM-A scores in the PD and HC
groups were 15.28 � 8.16 and 2.08 � 2.17, respectively.
The mean PDSS scores in the PD and HC groups were
11.88 � 6.64 and 0.03 � 0.16, respectively.

3.2 | Prediction of patients with PD
using physiological responses

To examine whether a combination of multimodal physi-
ological features could predict PD, linear regression anal-
ysis with stepwise forward entry was performed
(Table 4). A significant regression equation was found
with R = 0.451 (p < 0.001). Six features—LF during the
rest phase (res_LF), FT during the rest phase (res_FT),
FT during the stress phase (str_FT), HR during the recov-
ery phase (rec_HR), HR during the stress phase (str_HR),
and pNN50 during the recovery phase (rec_pNN50)—
were significant predictors and explained 20.3% of the
variance in PD. PD was influenced by these physiological
features in the following order: rec_HR (β = 0.559),
str_HR (β = �0.465), res_FT (β = �0.463), str_FT
(β = 0.345), rec_pNN50 (β = �0.344), and res_LF
(β = 0.269). PD was negatively related to res_FT, str_HR,
and rec_pNN50 and positively related to res_LF, str_FT,

TAB L E 4 Linear regression analysis predicting panic disorder with physiological features (N = 337, df = 336)

Predicted
variable Predictors

Unstandardized
coefficients

Standardized
coefficients

t 95% CI of B

Collinearity statistics

B SE Beta Tolerance VIF

Panic disorder res_LF 0.009 0.000 0.269 4.227*** 0.000 to 0.000 0.584 1.711

res_FT �0.156 0.041 �0.463 �3.793*** �0.237 to �0.075 0.159 6.304

str_FT 0.127 0.045 0.345 2.799** 0.038 to 0.215 0.156 6.422

str_HR �0.019 0.005 �0.465 �4.138*** �0.028 to �0.010 0.187 5.342

rec_HR 0.024 0.005 0.559 4.992*** 0.015 to 0.034 0.188 5.314

rec_pNN50 �0.027 0.005 �0.344 �5.762*** �0.037 to �0.018 0.662 1.510

Note: R = 0.451, R 2 = 0.203, adjusted R 2 = 0.189, F(1,336) = 12.039, p < 0.001. Durbin–Watson d = 1.419.
Abbreviations: CI, confidence interval; SE, standard error; VIF, variance inflation factor.
**p < 0.01.
***p < 0.001.

TAB L E 3 Demographic and clinical data of PD and HC groups

Factors PD (N = 32) HC (N = 39) t or χ 2 p-value

Age (years � SD) 43.47 � 13.05 41.15 � 15.74 0.677 0.500

Sex (male/female) 14/18 16/23 0.053 0.817

Education (years � SD) 15.34 � 2.31 14.05 � 2.67 2.189 0.032

BMI (kg/m2 � SD) 23.72 � 3.50 22.99 � 2.86 0.925 0.359

Smoker/nonsmoker 6/26 6/33 0.142 0.707

Alcohol consumption (g/week � SD) 4.77 � 11.26 8.91 � 9.42 1.660 0.102

HAM-A (points � SD) 15.28 � 8.16 2.08 � 2.17 9.713 <0.001

PDSS (points � SD) 11.88 � 6.64 0.03 � 0.16 11.163 <0.001
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and rec_HR. The Durbin–Watson test showed that there
was no first-order autocorrelation (d = 1.419). The collin-
earity diagnostics indicated that the variables were not
affected by multicollinearity: Tolerance ranged from
0.156 to 0.662, and the variance inflation factor ranged
from 1.510 to 6.422.

3.3 | Classification using machine
learning algorithms

We used five machine learning algorithms—LoR, KNN,
SVM, RF, and MLP—to classify the subjects into the PD
or HC group using the physiological features as input
data (Table 5, Figure 3). Four sets of input data were
compared. First, all 33 features were used as input data.
Second, six features that significantly predicted PD in the
linear regression (res_LF, res_FT, str_FT, rec_HR,
str_HR, and rec_pNN50) were used; these features were
referred to as the significant features. The third feature

TAB L E 5 Performance measures for the classification of PD and HC groups based on five machine learning algorithms

Algorithm/features ACC SEN SPE PPV NPV AUC

LoR All 62.00 64.43 60.26 53.78 70.25 0.6670

Significant 66.30 71.50 62.56 57.83 75.36 0.7420

Excl. significant 56.24 60.29 53.33 48.12 65.17 0.5742

HRV 63.22 65.86 61.33 55.02 71.45 0.6694

KNN All 55.91 63.21 50.67 47.93 65.73 0.5990

Significant 60.15 67.86 54.62 51.78 70.30 0.6530

Excl. significant 54.96 55.50 54.56 46.72 63.08 0.5746

HRV 58.60 64.93 54.05 50.34 68.28 0.6305

SVM All 55.49 63.71 49.59 47.52 65.65 0.5961

Significant 64.66 66.64 63.23 56.58 72.53 0.7000

Excl. significant 51.31 60.64 44.62 43.84 61.53 0.5941

HRV 53.97 65.64 45.59 46.30 65.22 0.6169

RF All 64.15 61.79 65.85 56.51 70.59 0.6604

Significant 65.25 64.29 65.95 57.54 72.01 0.6895

Excl. significant 61.28 57.29 64.15 53.45 67.66 0.6330

HRV 60.54 59.14 61.54 52.49 67.72 0.6308

MLP All 75.61 68.79 80.51 71.71 78.26 0.8222

Significant 60.03 68.79 53.74 51.68 70.57 0.6696

Excl. significant 71.58 66.36 75.33 65.97 75.72 0.7769

HRV 67.31 71.29 64.46 59.11 75.78 0.7364

Note: Four sets of input data were applied: all 33 multimodal features (All), six significant predictors from the linear regression analysis (Significant), 27
features excluding the six significant features (Excl. significant), and 24 HRV features excluding EDA, RESP, and temperature features (HRV).
Abbreviations: ACC, accuracy; SEN, sensitivity; SPE, specificity.

F I GURE 3 Classification accuracy for each combination of

input dataset and machine learning algorithm
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set excluded the six significant features and included the
remaining 27 features. The final feature set only included
the 24 HRV features and excluded the EDA, RESP, and
temperature features.

The highest accuracy (75.61%) was achieved using the
MLP with all 33 features; this algorithm also produced
the highest specificity (80.51%), PPV (71.71%), NPV
(78.26%), and AUC (0.8222). The highest sensitivity
(71.50%) was achieved using the LoR algorithm with the
significant features as input data. The LoR, KNN, SVM,
and RF models exhibited the highest accuracy with the
significant feature set; these results were better than
those of the dataset without the significant features and
the dataset with HRV features only.

We further investigated the effect of different combi-
nations of input features on the performance of the clas-
sifiers. For this, we ranked the features based on
MI. Table 6 shows the top 12 features ranked by the MI
method, including 10 HRV features, 1 PT feature (rank
6), and 1 RESP feature (rank 12).

Next, we evaluated the performance of the LoR,
KNN, and SVM classifiers using the Top 12, 9, 6, and
3 features as input data (Figure 4). The MLP and RF
models were not tested with these feature sets because
their performance was not substantially improved by
reducing the number of features. MLP showed the high-
est accuracy (75.61%) with all 33 features, whereas RF
showed 64.15% accuracy under the same conditions. The
accuracy of RF was similar to its highest accuracy,
65.25%, which was achieved with the significant features.
The line graphs in Figure 4 show the prediction accuracy
of the LoR, KNN, and SVM classifiers with the top-
ranked features according to the MI method. These accu-
racies were compared with those evaluated with all
33 features and the significant features for each algorithm

(bar graphs in Figure 4). In LoR, the highest accuracy
was 59.85%, which was achieved with the top nine fea-
tures (MI-9); this accuracy was lower than that achieved
with all features. In KNN, the accuracy increased to
61.76% as the number of features was reduced to three;
this was slightly greater than the accuracy achieved with
the significant features. In SVM, the highest accuracy
was 64.99% with the MI-9 features, which was similar to
the accuracy achieved with the significant features.

4 | DISCUSSION

We demonstrated that using machine learning models,
patients with PD can be distinguished from HCs with an
accuracy of 75.61% on the basis of physiological responses

TAB L E 6 Top 12 features ranked based on MI

Rank Feature MI

1 res_pNN50 0.09674

2 rec_RMSSD 0.08821

3 rec_SDNN 0.08818

4 rec_HF 0.08646

5 str_RMSSD 0.07791

6 rec_FT 0.06657

7 rec_pNN50 0.06572

8 res_LF 0.06486

9 str_VLF 0.06134

10 str_pNN50 0.05523

11 res_HF 0.05269

12 rec_RR 0.05070

F I GURE 4 Classification accuracy for each combination of

input dataset and machine learning algorithm. MI-12, MI-9, MI-6,

and MI-3 represent the Top 12, 9, 6, and 3 features ranked using

the MI method, respectively: (A) LoR, (B) KNN, (C) SVM

112 JANG ET AL.



induced by PPP tasks. The use of all 33 features extracted
from four different physiological signals resulted in the
highest accuracy in the classification of the PD and HC
groups using MLP. Linear regression analysis showed
that res_LF, res_FT, str_FT, rec_HR, str_HR, and
rec_pNN50 were significant predictors of PD. These six
significant features selected using linear regression were
multimodal and included four HRV and two temperature
indices. LoR, KNN, SVM, and RF exhibited the highest
accuracy with the significant feature set, performing bet-
ter than with the dataset excluding significant features
and the dataset with HRV features only. These results
suggest that combining multimodal physiological signals
can improve the performance of classifiers and that the
significant features found using linear regression analysis
play important roles in classification.

Four HRV features—rec_pNN50, res_LF, rec_HR,
and str_HR—were included in the six significant predic-
tors of PD identified by the linear regression analysis.
Abnormal autonomic activity represented by changes in
HRV features has been studied in various anxiety disor-
ders, including PD, GAD, posttraumatic stress disorder,
and social anxiety disorder. Chalmers and others [14]
performed a meta-analysis and found that PD was associ-
ated with reduced time-domain HRV features and
HF. Previous studies have reported a significant reduc-
tion in pNN50 in patients with PD compared with HCs
[18, 49, 50]. Consistently, PD was negatively related to
pNN50 during the recovery phase in this study. pNN50 is
a time-domain feature and reflects the activity level of
the parasympathetic tone [51]. It is closely associated
with HF [52]. In this study, PD was positively related to
LF during the rest phase. Previous studies have shown
that LF is significantly higher in patients with PD than in
HCs [17, 50, 53]. LF is affected by both vagal and sympa-
thetic activities [54], and an increased LF indicates ele-
vated sympathetic activation. Therefore, our results
suggest that PD is associated with decreased vagal tone
and increased sympathetic activity.

Notably, rec_HR was positively related to PD,
whereas str_HR was negatively related to PD. Cardiac
responses during the stress and recovery phases can
reflect altered autonomic activity in patients with
PD. The generalized unsafety theory of stress (GUTS)
provides an explanation of how abnormal cardiac activity
and anxiety disorders might be related and proposes that
the stress response is chronically inhibited while safety is
perceived [55]. However, when a stressor is perceived,
this cognitive inhibition is removed, and the default
stress response is triggered, resulting in the activation of
physiological responses, such as an increase in HR and a
decrease in HRV. When the stressor is removed, safety is
detected, the stress response is inhibited, and

physiological activation returns to normal levels. How-
ever, chronically anxious individuals, such as patients
with PD, have difficulty in perceiving safety, and, as a
result, their stress response is not inhibited but remains
active [5]. Therefore, anxious individuals may not fully
recover from the stress response but remain chronically
stressed [10]. GUTS differentiates between the stress
response during exposure to a stressor and prolonged
stress response, which occurs in the recovery phase after
the stressor has been removed [56]. These results are con-
sistent with the positive association observed between
rec_HR and PD, indicating that individuals in the PD
group might have experienced a prolonged stress
response during the recovery phase even after the stress
task had ended. However, the relationship between
str_HR and PD was negative. This result was not consis-
tent with the findings of previous studies, which reported
significantly increased HR in patients with PD compared
with HCs [25, 49]. Although a significant relationship
between HR and PD during the stress phase was
observed in the opposite direction, this finding might also
reflect altered autonomic reactivity in patients with
PD. In the current setup for experimental stress and
recovery, the immediate stress response and prolonged
stress response may lead to mixed outcomes in patients
with PD. These results suggest the need for future studies
on stress responses in patients with PD.

Two temperature indices were related to PD: res_FT
was negatively related and str_FT was positively related
to PD. FT is considered to be a surrogate marker of blood
flow changes resulting from vascular reactivity and is
influenced primarily by sympathetic adrenergic vasocon-
strictor nerves [57]. With more tense muscles under
strain, blood vessels contract, and FT decreases. For
example, FT is significantly decreased by stresses such as
emotional stress and fear and is increased during relaxa-
tion, boredom, and sleep [57–60]. However, the relation-
ship between FT and PD is not clear. Freedman and
others reported that patients with PD had significantly
lower FT than healthy subjects [25]. In contrast, Pruneti
and others found that FT was higher in patients with PD
than in HCs in all three phases of the PPP test: rest,
stress, and recovery [30]. We also found that res_FT and
str_FT were related to PD, albeit oppositely. Pruneti and
others also demonstrated that compared with the rest
phase, the stress phase resulted in a decrease in FT in the
HC group but an increase in FT in the PD group, suggest-
ing that physiological responses to stress differed between
patients with PD and healthy subjects [30]. An increase
in FT during the stress phase in the PD group may be
associated with elevated or dysfunctional vascular reac-
tivity, which is considered to be one of the physiological
factors affecting altered HRV in patients with PD.
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The SCL and RESP features were not identified as sig-
nificant predictors in the linear regression analysis. How-
ever, altered SCL in patients with PD has been
considered an important physiological index related to
increased tension and anxiety [61–63]. Pruneti and others
showed that SCL was higher in patients with PD than in
HCs in the rest, stress, and recovery phases and suggested
that increased SCL can indicate an acute state of anxiety
[30]. Patients with PD also exhibited increased respira-
tory irregularity and mean minute ventilation compared
with HCs, suggesting a link between panic and respira-
tory abnormalities [64]. Nonetheless, in some previous
studies, patients with PD showed no significant changes
in SCL and respiratory features at rest compared with
HCs [65, 66], suggesting that methodological differences
can lead to different conclusions.

In this study, we only used SCL as the representative
feature of the EDA signals. However, other EDA mea-
sures, such as phasic components, have also been used to
evaluate autonomic activity. The lack of inclusion of
these measures is a limitation of this study. To determine
which feature should be extracted from the EDA signals,
we took into account the extent to which the features
had been studied with respect to autonomic activity in
patients with PD. We selected SCL as the representative
feature for EDA based on a previous study, which used
an experimental design similar to ours [29]. Using a PPP
method, Pruneti and others tested four patient groups;
the patients in each group had either PD, GAD, major
depression episode (MSE), or obsessive–compulsive disor-
der (OCD). In their study, SCL was high in the PD and
GAD groups, whereas the MSE and OCD groups exhib-
ited flat and nonreactive activation to stressful stimuli.
Other studies have also demonstrated high SCL in
patients with PD [67–71].

The use of EDA features based on phasic component
analysis, such as skin conductance response (SCR), may
improve the performance of classifier models. Hoehn-
Saric and others [72] suggested that the SCR of patients
with PD was greater and more variable than that of HCs
during non-panic-inducing psychological stress. SCR is a
more phasic measure of change in skin conductance and
is related to the number of sweat glands that are activated
in response to particular stimuli [73]. It has been used to
evaluate subjects’ responses to event-related experiments
(“startle-like” stimuli) or tonic stimuli tests (a change in
condition, workload, or cognitive stress) [74]. The results
of these studies suggest that SCR can be used to investi-
gate sweat responses to the stimulus that we used in our
PPP experiment. In the future, we plan to test additional
EDA features to conduct more in-depth comparisons
between multimodal physiological features and to
improve prediction performance.

The MLP using all 33 features outperformed the one
using the HRV-only dataset (24 features), demonstrating
that combining multimodal features improved the perfor-
mance of MLP classifiers in this study. In addition, the
use of the significant feature set resulted in the highest
accuracy for LoR, KNN, SVM, and RF. We further tested
the effects of different combinations of input features in
LoR, KNN, and SVM using feature ranking based on MI
estimation. Five HRV features and one temperature fea-
ture were selected as the top six ranked features (MI-6).
However, there were no features common between the
MI-6 and significant feature sets. In LoR, feature selec-
tion did not improve performance, and in KNN and
SVM, feature selection did not result in substantially
improved accuracy compared with the highest perfor-
mance achieved with the significant feature set. These
results suggest that the significant features can play an
important role in detecting abnormal ANS activity in
patients with PD.

MLP showed the highest accuracy in differentiating
between the PD and HC groups. The classification accu-
racy depends not only on the algorithms but also on the
nature of the datasets. Because the characteristics of the
data, such as linearity and homogeneity, were unpredict-
able, we implemented and compared five machine learn-
ing algorithms having very distinct basic principles. Each
algorithm has its own advantages and disadvantages
[41, 75]. Our results do not suggest that MLP outperforms
other algorithms when using physiological data obtained
from different subjects or experimental setups. Other
researchers have achieved good results with different
algorithms. For instance, Na and others used LoR to
achieve the best accuracy for discriminating PD from
other anxiety disorders [31].

In the current study, the highest accuracy for classify-
ing the individuals into PD and HC groups was 75.61%,
which was achieved using MLP and multimodal physio-
logical features. Na and others achieved 78.4% accuracy
for distinguishing PD from other anxiety disorders using
LoR and HRV data [31]. Lueken and others achieved 79%
accuracy for distinguishing depressive comorbidity from
PD using a tree ensemble classifier and fMRI data [32].
Sundermann and others achieved <60% accuracy for pre-
dicting treatment outcomes in patients with PD and agora-
phobia using SVM and fMRI data [33]. However, because
the previous studies were based on different types of data
and did not focus on the differentiation between PD and
HC groups, the comparisons of accuracy are complicated.
We used nested CV to test the generalization performance.
The nested CV was repeated 10 times to further improve
the estimation. Therefore, our validation method did not
overestimate the performance of the model. Hence, our
results should be comparable to previously reported
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automated discrimination of PD based on physiological or
image data. Data obtained during PPP tasks can be consid-
ered sequential data with three time steps. In future stud-
ies, we will implement deep learning algorithms for
sequence processing, with the expectation that accounting
for temporal relationships between data points would
improve the performance of classifiers [76, 77].

5 | CONCLUSIONS

We demonstrated that patients with PD can be differenti-
ated from HCs with 75.61% accuracy using physiological
features. We found that combining multimodal signals
was crucial for identifying abnormal ANS reactivity in
patients with PD and improving the performance of the
classifiers. The features obtained from the stress and
recovery phases were included as significant predictors.
These findings suggest that multimodal physiological fea-
tures measured during various states of the ANS have the
potential to objectively differentiate patients with PD.
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