• Title/Summary/Keyword: Automotive manufacturing industry

Search Result 230, Processing Time 0.025 seconds

Improved Surface Characteristics of Automotive Interior Parts Fabricated by Injection Molding Method (사출법으로 제조된 자동차 내장부품의 표면특성 개선 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • The environmental pollution which is global warming and abnormal climate is caused by increasing population and activated economics. To reduce environmental pollution, we have being efforts into reducing $CO_2$ emission and use of energy, resources. Especially, for the sake of light weight and fuel efficiency of automotive industry, many countries have defined the restrict environmental regulation which stipulate high magnitude of reducing $CO_2$ emission. In this study, we have predicted the problem of Mu-cell injection molding through the finite element analysis as a function of temperature controlled by Joule heating or in terms of mold temperature. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mu-cell manufacturing. Lastly, we analyzed the surface characteristics of the injection products with mold temperature.

Test and Evaluation based on Standard Regulation of USA Federal Automotive Safety of Assistant Driver's Seat Airbag at Low Risk Deployment Passenger Airbag using Passenger Protection Wrap (승객보호용 랩을 적용한 저위험성 조수석 에어백의 미국 연방 자동차안전 기준법규에 의거한 시험과 평가)

  • Kim, Dong-Eun;Kim, Jin-Hyeong;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • The airbag is a widely accepted device for occupant protection in the automotive industry. As the injuries induced by airbag deployment have become a critical issue, revisions to Federal Motor Vehicle Safety Standard (FMVSS) 208 were required to create advanced airbags that can protect occupants of varying statures. In this paper, we developed a new low-risk deployment passenger airbag by adding the Passenger Protection Wrap (PPW). The PPW reduces the cushion impact force to the occupant in order to ensure pressure dispersion. A series of tests were conducted by using FMVSS 208 test procedures to demonstrate the proposed system. It was found that the system not only satisfied the injury criteria of FMVSS 208 but was also effective for protecting passengers of all sizes (male, small female, 3-year-old, 6-year-old).

Effect of Design Parameters and Molding Temperature on Polymethyl Methacrylate Lens Warp (PMMA Lens의 변형에 미치는 설계변수와 금형온도의 영향)

  • Lee, Seon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.109-116
    • /
    • 2016
  • Polymethyl methacrylate is commonly used in the outer lens of automotive rear lamps. However, if the lens warps above the allowable limit, it may lead to faulty connection with the housing, and failure of the assembly. This study investigated the effects of gate diameter and cooling line distance in the mold design for automotive outer lens. The optimal gate diameter and cooling line distance to minimize the warp of the outer lens were derived as 3.0 mm and 50-60 mm respectively, and the cooling temperature to minimize warp was shown to be $60-80^{\circ}C$ (mold surface temperature $48-67^{\circ}C$). A higher cooling temperature may somewhat mitigate the warp, but is undesirable because it may cause injection molding problems, such as sinks. A mold was constructed matching the optimal design and the produced lens properties, particularly the degree of warp, were comparable with the CAE predictions.

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

Optimization of the Durability Performance of a 17cc Automotive Compressor (17cc급 자동차용 압축기 내구성능 최적화에 관한 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.68-75
    • /
    • 2021
  • The fuel economy is a key issue for the automotive industry due to environmental concerns. In particular, only 5-20% of the energy generated in a car using an internal combustion engine is used as power, and the remaining energy is dissipated due to friction with other parts. The main components in the reciprocating piston type compressors commonly used in general vehicles include shafts, swash plates, pistons, and cylinders, and severe friction loss occurs due to the contact of these components. Generally, the wear contact is the maximum between the shaft and cylinder and between the piston and swash plate. The friction of these parts may cause quality problems and deteriorate the durability. In this study, to reduce the frictional loss, a prototype with additional coating agents was produced. Moreover, an optimized design was generated, and performance, noise, and durability tests were conducted. A more durable product was successfully obtained.

Development of Shearing Mechanism for Without Burr (Burr 없는 전단을 위한 전단기구 개발)

  • 강대철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.573-578
    • /
    • 2000
  • Recently, Tailor Welded Blanks(TWB) is widely used in automotive industry since the transformation characteristics of its material can be changed. However, clearance between welding surface becomes the important factor which affect the quality of the laser weld, causing difficulties in preparing the sheet. The objective of this paper is to systematically evaluate the effects of previously presented fracture criterion and shearing condition on precise mechanical shearing simulation result. Also predict the optimum shearing condition, effect of shearing condition such as clearance and punch radius on the shear plane shape was evaluated.

  • PDF

Simulation of Water Flows in Multiple Columns with Small Outlets

  • Suh Yong-Kweon;Li Zi Lu;Jeong Jong-Hyun;Lee Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1765-1772
    • /
    • 2006
  • High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycletime. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water.

A Study on the Improvement of Load Balance for Materials Supply Worker in Automobile Assembly Line (자동차 조립공정 부품공급 작업자별 부하밸런스 평준화 알고리즘 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • The efficiency of the purchasing and procurement logistics is important in automotive industry. The rationalization of production system is directly impact on productivity and quality. For this reason importance of logistics is high. Despite we are continuously making effort, our country are still below the level than developed country on logistics efficiency. Rising labor costs is an important factor in increasing logistics costs. So workforce reduction in logistics department is a large part. We deal with A-company inbound logistics, especially procurement logistics in automotive logistics as research object. So in this study we do research on work load balance about workers. We do research on 1,475 kinds of components in procurement process. We applied work load balance algorithm on chassis, final, sequence, trim warehouses workers. According to number of workers and average M/H, algorithm is applied in two ways. After applied work load balance algorithm we reduced numbers of workers from 28 to 20 and improved worker load balance rate from 47.1% to 93.7%.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Analysis of Defect Characterization in a Rectangular Shape Flange Hydroforming Process (사각형상 플랜지 액압성형 공정 시 결함특성 분석)

  • Shin, S.G.R.;Joo, B.D.;Han, S.W.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.275-279
    • /
    • 2013
  • The tube hydroforming process has received much attention in the automotive industry because of its advantages compared to conventional manufacturing technologies. A wide range of products such as sub-frames, camshafts, radiator frames, axles and crankshafts are made by hydroforming process. The hydroformed parts often need to be structurally joined to other components during assembly. Therefore, these automotive parts need to be manufactured with a localized attachment flange. In this study, FE forming analyses of a part with a rectangular flanged shape was performed with Dynaform 5.5. Using the optimized conditions determined numerically, hydroforming experiments were performed. Then, the characterization of defects was analyzed. Finally, the accuracy of the optimized internal pressure condition as well as that of the initial ram position were evaluated. The results demonstrated that flanged parts can be successfully produced using the tube hydroforming process.