• Title/Summary/Keyword: Automotive intelligent Network

Search Result 49, Processing Time 0.026 seconds

Implementation of FlexRay Network System using Node-based Scheduling Method (노드 기반 스케줄링 방법을 이용한 FlexRay 네트워크 시스템의 구현)

  • Kim, Man-Ho;Ha, Kyoung-Nam;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2010
  • As vehicles become intelligent for convenience and safety of drivers, in-vehicle networking (IVN) systems are essential components of intelligent vehicles. Recently, the chassis networking system which require increased network capacity and real-time capability is being developed to expand the application area of IVN systems. Also, FlexRay has been developed for the chassis networking system. However, FlexRay needs a complex scheduling method of static segment, which is a barrier for implementing the chassis networking system. Especially, if we want to migrate from CAN network to FlexRay network using CAN message database that was well constructed for the chassis networking system by automotive vendors, a novel scheduling method is necessary to be able to reduce design complexity. This paper presents a node-based scheduling method for FlexRay network system. And, in order to demonstrate the method's feasibility, its performance is evaluated through an experimental testbed.

Synchronize Ethernet-based Fault Injection Algorithm Implementation for Intelligent Automotive Network (차량용 지능형 네트워크에서의 동기식 이더넷중심 오류 주입 알고리즘 구현☆)

  • Jang, Eunji;Kim, Inyoung;Lee, Woongjae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.43-50
    • /
    • 2016
  • In this paper, we propose the protocol of Ethernet that will receive a popular interesting in the automotive intelligent network, it also attempts to implementation and verification through simulation and experiments to propose a fault tolerance algorithm when the data transfer on it. It has proven the usefulness of the system in order to apply toward an existing automotive communication system. In the case of actual real-time data for automotive industry, we generated a randomly-generated data which is the set of payload into a standard format to complete the experiment. Among the implemented existing algorithms performance, we confirmed the effectiveness of all range from a single data to mixed (Hybrid-type) data, to verify the proposed algorithm.

OVERVIEW OF TELEMATICS: A SYSTEM ARCHITECTURE APPROACH

  • Cho, K.Y.;Bae, C.H.;Chu, Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.509-517
    • /
    • 2006
  • In the mid 1990s, the combination of vehicles and communication was expected to bolster the stagnant car industry by offering a flood of new revenues. In-vehicle computing systems provide safety and control systems needed to operate the vehicle as well as infotainment, edutainment, entertainment, and mobile commerce services in a safe and responsible manner. Since 1980 the word "telematics" has meant the blending of telecommunications and informatics. Lately, telematics has been used more and more to mean "automotive telematics" which use informatics and telecommunications to enhance the functionality of motor vehicles such as wireless data applications, intelligent cruise control, and GPS in vehicles. This definition identifies telecommunications transferring information as the key enabling technology to provide these advanced services. In this paper, a possible framework for future telematics, which called an Intelligent Vehicle Network(IVN), is proposed. The paper also introduces and compares a number of existing technologies and the terms of their capabilities to support a suite of services. The paper additionally the paper suggests and analyzes possible directions for future telematics from current telematics techniques.

Developing an In-vehicle Network Education System Based on CAN (CAN을 기본으로한 전기자동차용 차량 네트워크 교육용 시스템 개발)

  • Lee, Byoung-Soo;Park, Min-Kyu;Sung, Kum-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.54-63
    • /
    • 2011
  • An educational network system based on CAN protocol internal to a passenger ground vehicle has been developed. The developed network system has been applied to a commercial plug-in electrical vehicle and verified the educational applicability. To apply this in-vehicle network technology based on CAN, a suitable electric vehicle has been chosen and a CAN network structure has been designed, developed and manufactured. Since the commercial electric vehicle chosen as a test bed has its own proprietary electric network, we explain how the original electric network has been utilized and how the new network system has been designed. The developed network system on a real vehicle has been tested to show the applicability and the performance. Finally, the system has been applied at few classrooms to demonstrate how the in-vehicle network system works and to teach how to analyse the CAN signals. The developed system proven to be effective for educational purpose.

Design and Implementation of Automotive Intrusion Detection System Using Ultra-Lightweight Convolutional Neural Network (초경량 Convolutional Neural Network를 이용한 차량용 Intrusion Detection System의 설계 및 구현)

  • Myeongjin Lee;Hyungchul Im;Minseok Choi;Minjae Cha;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.524-530
    • /
    • 2023
  • This paper proposes an efficient algorithm to detect CAN (Controller Area Network) bus attack based on a lightweight CNN (Convolutional Neural Network), and an IDS(Intrusion Detection System) was designed, implemented, and verified with FPGA. Compared to conventional CNN-based IDS, the proposed IDS detects CAN bus attack on a frame-by-frame basis, enabling accurate and rapid response. Furthermore, the proposed IDS can significantly reduce hardware since it exploits only one convolutional layer, compared to conventional CNN-based IDS. Simulation and implementation results show that the proposed IDS effectively detects various attacks on the CAN bus.

A Research of Automotive Embedded System (차량용 임베디드시스템 기술동향)

  • Park, Sang-Hyun;Lee, Chul-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.243-245
    • /
    • 2009
  • In recent years, a development of automotive embedded systems called Intelligent Vehicle are used for control and communication with CAN protocol. But as various devices and protocols are developed for Vehicle communication and control, it becomes difficult to manage the systems that contain limitation of bandwidth and various control requirement. To solve these problems, we introduce a research of automotive embedded systems which is considered the automotive real time operating system, automotive communications, and control systems.

  • PDF

Intelligent Switching Control of Pneumatic Cylinders by Learning Vector Quantization Neural Network

  • Ahn KyoungKwan;Lee ByungRyong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2005
  • The development of a fast, accurate, and inexpensive position-controlled pneumatic actuator that may be applied to various practical positioning applications with various external loads is described in this paper. A novel modified pulse-width modulation (MPWM) valve pulsing algorithm allows on/off solenoid valves to be used in place of costly servo valves. A comparison between the system response of the standard PWM technique and that of the modified PWM technique shows that the performance of the proposed technique was significantly increased. A state-feedback controller with position, velocity and acceleration feedback was successfully implemented as a continuous controller. A switching algorithm for control parameters using a learning vector quantization neural network (LVQNN) has newly proposed, which classifies the external load of the pneumatic actuator. The effectiveness of this proposed control algorithm with smooth switching control has been demonstrated through experiments with various external loads.

Intelligent Switching Control of the Pneumatic Artificial Muscle Manipulators

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.76-81
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  • PDF

Improvement of the Control Performance of Pneumatic Artificial Muscle Manipulators Using an Intelligent Switching Control Method

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1388-1400
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

Development of IEEE 1451 based Smart Module for In-vehicle Networking Systems (IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.155-163
    • /
    • 2003
  • As vehicles become more intelligent for convenience and safety of drivers, the in-vehicle networking(IVN) systems and smart modules are essential components for intelligent vehicles. However, for wider application of smart modules and IVN's, the following two problems should be overcome. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports all the existing IVN protocols, the smart module must be independent of the type of networking protocols. Secondly, when the smart module needs to be replaced due to its failure, only the transducer should be replaced these without the replacement of the microprocessor and network transceiver. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based smart module. More specifically, a smart module for DC motor control has been developed. The module has been evaluated for its delay caused by the IEEE 1451 architecture. In addition, the time required for transducer replacement has been measured.