• Title/Summary/Keyword: Automotive bracket part

Search Result 21, Processing Time 0.023 seconds

Development of a Inspection System for Automotive Part (자동차 부품 누락 방지를 위한 자동 선별 시스템)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.756-760
    • /
    • 2017
  • Meeting the growing demand deadlines, reducing the production cost and upgrading the quality control measurements are the reasons why the automotive part manufacturers are venturing into automation. Attaining these objectives is impossible with human inspection for many reasons. Accordingly, the introduction of inspection system purposely for door hinge bracket inspection is presented in this study as an alternative for human inspection. This proposal is designed to meet the demands, features and specifications of door hinge bracket manufacturing companies in striving for increased throughput of better quality. To improve demerits of this manual operation, inspection system is introduced. As the inspection algorithm, template matching algorithm is applied to distinguish the articles of good quality and the poorly made articles. Through the verification test of the inspection process algorithm and the similarity metric matching algorithm, the detection accuracy was 98%, and it was applied to the production site to contribute to the improvement of the productivity due to the decrease of the defective product.

An Analysis on the Effect of Application on Vibration Isolation Liner of Elevator Guide Rail Bracket (엘리베이터 가이드 레일 브라켓의 방진라이너 적용효과에 관한 분석)

  • Roh, Seung-Kwon;Kim, Eundo;Oh, Jong-Seok;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.145-151
    • /
    • 2019
  • In this study, the effects were analyzed by applying the vibration absorption liner into the guide rail bracket as a part of method to reduce the vibration and noise on the high-rise apartment. As the result of vibration absorption liner performance, it was checked that the level of vibration and noise was reduced around 65.49% in the car side and around 90.05% in the counterweight side. Therefore, the vibration absorption effect by the vibration absorption liner of elevator guide rail bracket became fairly good. In case of the vibration absorption liner application, there was an effect on the reduction of 7.26 to 22.22% at hoistway section area, 3,840,000 to 9,780000 KRW at the cost of material and installation by comparing with the damping beam application. Also, in case of the vibration absorption liner application with light weight instead of damping beam with heavy weight, it was thought to become significant effect at preventing the safety from the accidents on installation site.

Study on Fatigue Durability Analysis of Poclain Bucket (포크레인 버켓의 피로 내구성 해석에 대한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • This study analyzes about poclain bucket through fatigue durability analysis. Maximum equivalent stress and total deformation are shown at the lower of bucket and edge part respectively. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of -10000Pa to 5000MPa and the amplitude stress of 0 to 6000MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of poclain bucket by investigating prevention and durability against fatigue damage.

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

A Study on Structural Safety Analysis of Hub Space (허브스페이스의 구조적 안전성 해석에 대한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.352-359
    • /
    • 2015
  • This study investigates the analysis result of structure and fatigue due to the models of the hub space with bolt joint at wheel and the existence or nonexistence of hub ring as the part of suspension system of vehicle. As the static analysis result, the structural vulnerability can be found at hub bolt and the center of wheel at three models. Model 2 and 3 have nearly same deformation and model 1 can be endured at the least load among three models. As the fatigue analysis result, fatigue lives of three models are same at the severest load of SAE bracket history. As many screw threads of weak bolts are jointed in case of model 1, model 1 is shown to be the weakest at fatigue damage among three models. By the result of this study, model 1 with bolt joint becomes most weakest among three models. As model 2 with no hub ring and model 3 with hub ring have the nearly same states of analysis results, hub ring is shown to have no influence on the safety of automotive driving.

Durability Study of Subway Brake Disc and Wheel-type Brake (지하철의 브레이크 디스크와 차륜방식브레이크의 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, as part of the subway braking system, the structural analysis was performed with the fatigue analysis by comparing subway brake disc and wheel-type brake. When structural analysis was performed, it was possible to verify that the wheel-type brake were higher than the brake discs in case of total deformation. As the same loading conditions were given to the subway brake disc and wheel-type brake, wheel-type brakes was shown to have more deformation than brake disk but lower damage than the subway brake disc. Comparing with each fatigue loading condition, the maximum fatigue life for 'Sample history' is found to be about 60 times longer than for 'SAE bracket history'.

A Study for Failure Examples Including with Timing Belt, Camshaft Position Sensor and Ignition Coil Damage of LPG Vehicle Engine (액화석유가스 자동차 엔진의 타이밍벨트, 캠샤프트포지션센서, 점화코일 손상과 관련된 고장사례에 대한 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Jee Hyun;Lee, Jae Gang;Han, Seung Min;Hwang, Woo Chan;Hwang, Han Sub;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.54-59
    • /
    • 2022
  • This paper is a purpose to study and analyze the failure examples for timing belt, camshaft position sensor and ignition coil of LPG automotive engine. The first example, whe the service man install the front case bracket of engine, he excessively tightened up a 12mm bolt for being fixed of brackct. As a results, the bolt was separated from joint part so that it was put in between the crankshaft sprocket. Therefore the belt was broken off because of interference between timing belt and sprocket tooth. The second example, it verified the disharmony phenenomen of engine that the gap of the camshaft position sensor and camshaft senseing point assembled on cylinder head part was small more than iregular value so that the it was generated senseing damage phenomenon by pulse signal misconduct. The third example, it was found the engine disharmony phenomenon that the fire in the ignition coil was leaked by inner damage of Number 2 ignition coil.Therefore, the the manager of a car throughtly have to inspect not in order to arise the failure symptoms.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

A Study on Structural Durability due to the Configuration of Ripper at Excavator (굴착기에서의 리퍼의 형상에 따른 구조적 내구성 연구)

  • Kang, Min-Jae;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • In this study, two models due to the configuration of ripper at excavator are investigated by structural and fatigue analyses. The maximum stress and deformation are happened at the axis connected with the body of working device and the direct working part respectively. Model 1 is thought to have more structural durability than model 2. Fatigue life or damage in case of 'SAE bracket history' whose load change is most severest among non-uniform fatigue loads is shown to become most unstable. But life or damage in case of 'Sample history' whose load change is slowest among non-uniform fatigue loads is shown to become most stable. These study results can be effectively utilized with the design of ripper at excavator by anticipating and investigating prevention and durability against its fatigue damage.

A Study on the Bonding Strength Analysis according to the Surface Treatment Characteristics of Aluminum Bar-Cowl Cross Member of Composite Material Injection Insert (복합소재 사출인서트 알루미늄 바 카울크로스멤버 표면처리 특성에 따른 접합강도 분석 연구)

  • Son, Dong il;So, Sangwoo;Hwang, Hyuntae;Choi, Dong hyuk;Choi, Wan gyu;Kim, Sun kyung;Kim, Dae il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.360-364
    • /
    • 2020
  • Although research and development of existing steel-made Cowl Cross Member(CCM) was carried out with magnesium and plastic to make vehicles lighter, it is difficult to apply them to performance problems in the vehicle's mounting condition. Recently, the company is conducting research on the injection CCM of the composite insert as a lightweight component that is most suitable for mass-production of automotive parts. This is a manufacturing process that inserts composite injection bracket parts into aluminum bar, and the adhesion of the two parts is one of the important factors considering the vehicle's mounting conditions. In this study, the joint strength of Aluminum bar is one of the important factors as a study for the injection of aluminum bar into PA6-GF60 composite material. For the analysis of these research, the method of spraying adhesive to the aluminum bar and the case of knurling treatment have been analyzed and the bonding strength of the direction of rotation and lateral direction has been analyzed for each part between the aluminum bar of the cowl cross member and the shape of the injection component of composite materials.