• 제목/요약/키워드: Automotive Wheel

검색결과 426건 처리시간 0.025초

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.

VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K.;UCHANSKI M.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.475-481
    • /
    • 2005
  • This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

설계민감도 해석을 이용한 승용차의 스티어링 휠 아이들 진동 개선 (Improvement of Steering-Wheel Idle Vibration in a Passenger Car using Design Sensitivity Analysis)

  • 이두호;김명업
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.129-137
    • /
    • 2000
  • In the prototype stage of a car developing program, the efficiency of trouble shooting is an important factor to be considered. Structural modifications by the design sensitivity analysis are applied to a steering wheel system for improving the idle vibration of the prototype passenger car. For the design sensitivity analysis, the experimental modal analysis for the steering system attached to a body-in-white is fulfilled and the modal parameters extracted from the experimental data are used to predict the effect of structural modification, The design sensitivity results rank the locations to be reinforced in terms of frequency variation. The modification of steering system according to the sensitivity analysis results shifted the resonant frequency of the system effectively. In addition, the idle test of the car after the structural modifications f steering system shows that the proposed method can reduce vibration of the steering wheel efficiently.

  • PDF

주행 중 실내소음과 Wheel의 Lateral Dynamic Stiffness와의 상관관계에 대한 시험적 연구 (The Experimental Study on the Correlation of the Interior Noise of a Driving Vehicle with Lateral Dynamic Stiffness of the Wheel)

  • 김병진;사정환;박진성;박현우;조성근;정헌술
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제2권1호
    • /
    • pp.9-13
    • /
    • 2014
  • 현재 소비자들이 자동차를 선택하는 여러 이유 중에서, NVH 성능이 아주 중요한 역할을 하고 있다. 근래 하이브리드 및 전기자동차들은 전통적인 차량의 주요 소음원 이었던 엔진의 소음이 거의 발생되지 않아 자동차 실내의 소음에 대한 관심은 더욱 커지고 있다. 해외 참고문헌에 의하면 자동차 휠의 높은 Lateral Dynamic Stiffness(LDS)가 운전 중 발생되는 Structure Bone Noise(SBN)를 저감시키는 것으로 기술되어 있다. 하지만 유효한 기준 및 시험적 결과가 미비하여, 본 연구에서는 LDS가 서로 다른 휠에 동일 타이어를 부착하여 실내소음을 시험 측정하였다. 그 결과 휠의 LDS에 따라 실내소음이 변화되는 것을 확인하였다. 이는 휠의 최적설계로 실내소음의 저감이 가능할수 있다.

차량의 모델링과 엔진마운트 최적설계값의 적용 (The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF

4WS 차량의 모델링 및 동적 해석 (Modeling & Dynamic Analysis for Four Wheel Steering Vehicles)

  • 장진희;정웅상;한창수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

상용차용 중공형 휠 너트 렌치의 냉간단조 공정 개발 (Development of Cold Forging Process of Hollow-type Wheel Nut Wrench for Commercial Vehicles)

  • 김홍석;윤재웅
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.493-498
    • /
    • 2012
  • A wheel nut wrench is one of the hand tools used to loosen and tighten lug nuts on automobile wheels and it has generally a solid-type geometry for commercial vehicles. However, the solid-type wheel nut wrenches manufactured by hot forging processes exhibit several drawbacks such as heavy weight and rough surface finish. Thus, many efforts have been devoted to change the part geometry and improve the manufacturing process. For this purpose, the weight of the final product can be reduced drastically using a hollow tube as the initial stock, which can be manufactured by the more economical manufacturing process of cold forging. In this study, the cold forging of a hollow-type wheel nut wrench for commercial vehicles was designed based on the results of fundamental experiments and CAE analyses using the commercial finite element code DEFORM-3D. In addition, cold forging experiments were conducted on a special-purpose forming machine for hollow wheel nut wrenches in order to validate the designed process sequence. As results, it was found that the final products with a weight reduction of 39% and better surface appearance can be manufactured without any defect with the newly designed cold forging process.

후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석 (Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System)

  • 신슬기;최규재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.