VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K. (Department of Electrical Engineering, Woosuk University) ;
  • UCHANSKI M. (Segime, 92200 Neuilly sur Seine) ;
  • SONG C. K. (School of Mechanical and Aerospace Engineering, ERI, Gyeongsang National University)
  • Published : 2005.10.01

Abstract

This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

Keywords

References

  1. Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering. Prentice Hall. N.J
  2. Bakker, E., Pacejka, H., and Lidner, L. (1989). A new tire model with an application in vehicle dynamics studies. SAE Trans. J. Passenger Cars, 98, 101-113
  3. Basset, M., Zimmer C. and Gissinger, G. L. (1997). Fuzzy approach to the real time longitudinal velocity estimation of a FWD car in critical situations. Vehicle System Dynamics 27, 5-6, 477-489
  4. Bevly, D. M., Sheridan, R., and Gerdes, J. C. (2001). Integrating INS sensors with GPS velocity measurements for continuous estimation of vehicle sideslip and tire cornering stiffuess. Proc. American Control Conference, Arlington, VA, USA, 25-30
  5. Daiss, A. and Kiencke, U. (1995). Estimation of vehicle speed fuzzy-estimation in comparison with Kalman-filtering. Proc. 4th IEEE Conference on Control Applications, 281-284
  6. Dieckmann, Th. (1992). Assessment of road grip by way of measured wheel speed variables. Proc. FISITA '92 Congress, London, GB, 75-81
  7. Gustafsson, F. (1997). Slip-based tire-road friction estimation. Automatica 33,6, 1087-99 https://doi.org/10.1016/S0005-1098(97)00003-4
  8. Hwang, J. K. and Song, C. K (2002). Absolute vehicle speed estimation considering acceleration bias abd tire radius error. Trans. Korean Society Automotive Engineers 10, 6, 234-240
  9. Hwang, J. K and Song, C. K (2005). Fuzzy estimation of vehicle speed using an accelerometer and wheel sensors. Int. J Automotive Technology 6, 4, 359-365
  10. Hayes, M. H. (1996). Statistical Digital Signal Processing and Modeling. John Wiley and Sons, Inc., N.Y
  11. Hedrick, J. K. and Uchanski, M. (2001). Brake System Modeling and Control, Report for California PATH MOU308
  12. Kiencke, U. and Nielson, L. (2000). Automotive Control Systems. Springer-Verlag. Germany
  13. Kobayashi, K., Cheok, K. and Watanabe, K. (1995). Estimation of absolute vehicle speed using fuzzy logic rule-based kalman filter. Proc. American Control Conference, 3086-3090
  14. Miller, S. L., Youngberg, B., Millie, A., Schweizer, P., and Gerdes, J. C. (2001). Calculating longitudinal wheel slip and tire parameters using GPS velocity. Proc. American Control Conference Arlington, VA, USA,1800-1805
  15. Muller, S., Uchanski, M. and Hedrick, J. K. (2002). Robust identification of the maximum tire-road friction coefficient during braking. XV IFAC World Congress, Barcelona, Spain
  16. Oh, K. O. and Song, C. K. (2002). Absolute vehicle speed estimation using neural network model. Trans. KSPE 19, 9, 51-58
  17. Song, C. K., Hwang, J. K., and Hedrick, J. K (2002), Absolute vehicle speed estimation using fuzzy logic. Trans. Korean Society Automotive Engineers 10, 1, 179-186
  18. Song, C. K., Uchanski, M., and Hedrick, J. K. (2002). Vehicle speed estimation using accelerometer and wheel speed measurements. ATT Congress, Paris, France, 2002-01-2229
  19. Uchanski, M. (2001). Road Friction Estimation for Automobiles Using Digital Signal Processing Methods, Ph.D. Dissertation, University of California at Berkeley
  20. Yi, K., Hedrick, J. K. and Lee, S. C. (1999). Estimation of tire-road friction coefficients using observer based identifiers. Vehicle System Dynamics, 31, 233-261 https://doi.org/10.1076/vesd.31.4.233.4231