• 제목/요약/키워드: Automotive Radar

검색결과 115건 처리시간 0.025초

Implementation and Design of FMCW radar for Automotive Collision Warning (차량 충돌 방지를 위한 FMCW 레이더 설계 및 DSP 구현)

  • 김양수;오우진;오상철
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.939-942
    • /
    • 2000
  • 본 논문에서는 차량 충돌 방지 시스템으로 많이 사용되고 있는 밀리미터파를 이용한 FMCW(Frequency Modulated Continuous Wave) 레이더의 신호 처리부를 분석 및 설계하였고, 설계한 레이더의 파라미터 값들을 이용하여 선행 차량의 거리와 속도 정보를 검출하는 신호 처리 과정을 시뮬레이션 해 보았다. 최종적으로 FMCW 레이더의 신호 처리부를 TI사의 TMS320C31 DSP을 이용하여 하드웨어로 구현하였다.

  • PDF

Application and Perspective on Automotive Radar Technology (차량용 레이더 응용 기술 및 발전 방향)

  • Kim, D.H.;Cho, P.D.
    • Electronics and Telecommunications Trends
    • /
    • 제18권1호통권79호
    • /
    • pp.33-41
    • /
    • 2003
  • 차량용 레이더란 지능형 교통시스템의 여러 가지 구현 목표 가운데 차량의 안전 운행과 관련된 부분으로 열악한 기상조건 또는 운전자의 부주의로 인해 발생 가능한 사고를 미연에 방지할 목적으로 개발된 시스템이다. 본 고에서는 이러한 차량용 레이더에 요구되는 여러 가지 기술적인 사항들과 세계적인 업계의 동향 그리고 나아가 국내의 기술기준에서 고려해야 할 사항들에 관하여 개괄적으로 살펴보았다.

An Analysis on Short-Range-Radar Characteristic for Developing Object Detecting System (물체탐지 시스템의 개발을 위한 근거리 레이더에 대한 특성 분석)

  • Park, Dong-Jin;Ryu, In-Hwan;Byun, Ki-Hoon;Lee, Sang-Min;Kwon, Jang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39C권12호
    • /
    • pp.1267-1279
    • /
    • 2014
  • In this paper, we suggest the development of object detection systems for the safety of the ship through the study of the properties of short-range radar. Many of the short-range radars developed for special purpose like cars has cheaper price advantages but it is not proper to every application. In order to overcome such obstacles we need to analysis data from experiments in various environments and feature analysis of the device is essential. Also, the data clustering algorithms to display correct classified moving objects is necessary. In this paper we propose the advanced fast moving object detection system using short range radars with better detection accuracy. And we proposed a clustering algorithm using the value of the RCS and the speed and trajectory information of the radar data that are reflected.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제16권2호
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Development of Switched-Capacitor Sigma-Delta Modulator for Automotive Radars (차량 레이더용 스위치 커패시터 시그마-델타 변조기 개발)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제14권8호
    • /
    • pp.1887-1894
    • /
    • 2010
  • This paper proposes a new switched-capacitor sigma-delta modulator for automotive radars. Developed modulator is used to perform high-resolution analog-to-digital conversion (ADC) of high frequency band signal in a radar system. It has supply voltage of 2.7V, and has body-effect compensated switch configuration with low voltage and low distortion. The modulator has been implemented in a $0.25{\mu}m$ double-poly and triple-metal standard CMOS process, and it has die area of $1.9{\times}1.5mm^{2}$. It showed better total harmonic distortion of 20dB than the conventional bootstrapped circuit at the supply voltage of 2.7V.

Development of Small SAR System and Signal Processing Algorithm for Full-Polarization Data Acquisition with 30 cm Resolution (30 cm급 완전편파 데이터 획득을 위한 소형 SAR 시스템 개발 및 신호처리)

  • Song, Jung-Hwan;Jung, Chul-Ho;Choi, Jong-Joon;Kim, Jin-Soo;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권9호
    • /
    • pp.707-721
    • /
    • 2018
  • In this paper, a small synthetic aperture radar(SAR) system with 30 cm resolution is proposed, and a RAW data-based Doppler parameter estimation and motion compensation algorithm is described in detail. Acquisition of both PolSAR and InSAR data are enabled because there are two channels each in the transmitter and receiver modules. Automotive-based field work is performed to obtain PolSAR data, and signal processing results are ultimately obtained. A motion compensation algorithm is used to mitigate the residual phase error due to platform oscillation, and improved performance is obtained with the motion compensation algorithm using the automotive field test data.

Design of High Gain array antenna for 70GHz band Short Range Radar Sensor (70GHz대역 근거리레이다 센서용 고이득 배열안테나의 설계)

  • Kim, Ju-suk;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.402-403
    • /
    • 2018
  • 70GHz-band high gain array antenna is developed for automotive short range radar sensor. In Short-rangeradar, the gain must be high in order to increase the resolution, and the angle width must be set to secure the field of view(Fov). The proposed antenna operates at 76~81GHz and satisfies angle width $60^{\circ}$, antenna gain 15dB and the input reflection coefficient of less than -10dB within the operating frequency. Wave guide WR-10 was used to measure the antenna and results similar to the simulation results were obtained.

  • PDF

Noncontact Sleep Efficiency and Stage Estimation for Sleep Apnea Patients Using an Ultra-Wideband Radar (UWB 레이더를 사용한 수면무호흡환자에 대한 비접촉방식 수면효율 및 수면 단계 추정)

  • Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제23권3호
    • /
    • pp.433-444
    • /
    • 2020
  • This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.