• Title/Summary/Keyword: Automotive Plant

Search Result 156, Processing Time 0.026 seconds

A Study on Actual Conditions of Industrial Safety Regulations - Based on Petrochemical Plant - (산업현장에서의 안전규제 적용실태 연구 - 석유화학공장을 중심으로 -)

  • Oh, Hyeong-Geun;Baek, Dong-Seung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Without a special mineral resources in Korea, such as petrochemical industries, electronics and automotive industries to supply the basic material, but remains a key industry locations. Gongjeongsang dealing with hazardous materials, such as a fire or explosion hazard, and from this site sangjonhae safety regulations to protect human and material disaster prevention activities are focused. However, depending on the actual implementation of standardized safety regulations as necessary if not originally intended, proper objectivity and reliability of safety regulations, as well as impaired resulting in a waste of public and private administrative power and petrochemical industries and the competitiveness of the entire drop factor will. Accordingly, this study petrochemical plant is applied to a representative safety regulations, items for their safety are needed and these regulations as being implemented that was identified, according to a study, some of the need for regulation and implementation both in terms of reliability was low.

A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory (KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1419-1426
    • /
    • 2012
  • The heating and cooling energy load of the KNU plant factory was analyzed using the DesignBuilder. Indoor temperature set-point, LED supplemental lighting schedule, LED heat gain, and type of double skin window were selected as simulation parameters. For the cases without LED supplemental lighting, the proper growth temperature of lettuce $20^{\circ}C$ was selected as indoor temperature set-point together with $15^{\circ}C$ and $25^{\circ}C$. The annual heating and cooling loads which are required to maintain a constant indoor temperature were calculated for all the given temperatures. The cooling load was highest for $15^{\circ}C$ and heating load was highest for $25^{\circ}C$. For the cases with LED supplemental lighting, the heating load was decreased and the cooling load was 6 times higher than the case without LED. In addition, night time lighting schedule gave better result as compared to day time lighting schedule. To investigate the effect of window type on annual energy load, 5 different double skin window types were selected. As the U-value of double skin window decreases, the heating load decreases and the cooling load increases. To optimize the total energy consumption in the plant factory, it is required to set a proper indoor temperature for the selected plantation crop, to select a suitable window type depending on LED heat gain, and to apply passive and active energy saving technology.

Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants (해양플랜트용 고압·고차압 제어밸브의 성능 평가)

  • Kim, Kyuchul;Lee, Chiwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

Development of Tomograph Technique for Evaluating Thickness Reduction using Noncontact Ultrasonic Sensor Network (두께감육 평가를 위한 비접촉식 초음파 센서 네트워크를 이용한 토모그래프 기술 개발)

  • Lee, J.M.;Kim, Y.K.;Park, I.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • This paper describes a tomographic imaging technique for evaluating the thickness reduction of a plate-like structure using a noncontact sensor network based on an electromagnetic acoustic transducer that generates shear horizontal plate waves. Because this technique is based on the effect of mode cutoff and time of flight of guided waves caused by a change in thickness, the tomographic image provides information on the presence of defects in the structure. To verify the performance of the method, artificial defects with various thickness reduction ratios were machined in an aluminum plate, and the tomographic imaging results are reported. The results show that the generated tomographic image displays the thickness reductions and can identify their locations. Therefore, the proposed technique has good potential as a tool for health monitoring of the integrity of plate-like structures.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System (자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현)

  • Ha, Young-Hoon;Woo, Sang-Bok;Ahn, Hyun-Sik;Hahn, Hyung-Sang;Park, Young-Jin
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

Scheduling of a Casting Sequence Under Just-In-Time (JIT) Production (적시 생산 방식에서의 주조공정 스케줄링)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • In this article, scheduling of a casting sequence is studied in a casting foundry which must deliver products according to the Just-in-time(JIT) production policy of a customer. When a foundry manufactures a variety of casts with an identical alloy simultaneously, it frequently faces the task of production scheduling. An optimal casting schedule should be emphasized in order to maximize the production rate and raw material efficiency under the constraints of limited resources; melting furnaces and operation time for a casting machine. To solve this practical problem-fulfilling the objectives of casting the assigned mixed orders for the highest raw material efficiency in a way specified by the customer's JIT schedule, we implement simple integer programming. A simulation to solve a real production problem in a typical casting plant proves that the proposed method provides a feasible solution with a high accuracy for a complex, multi-variable and multi-constraint optimization problem. Employing this simple methodology, a casting foundry having an automated casting machine can produce a mixed order of casts with a maximum furnace utilization within the due date, and provide them according to their customer's JIT inventory policy.

A Study on Failure Analysis of Low Pressure Trubine Blade Using AFM and FEM (AFM과 FEH을 이용한 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1705-1712
    • /
    • 2001
  • Mechanical component has striation with constant width and SEM can estimate fracture type and loading condition. SEM has benefit to fatigue fracture analysis but striation can be observed according to the kind of material and range of crack growth rate and can't. In this case, it needs AFM that can measure 3-dimensional surface profile with resolution of atomic size. In this study. to find fracture reason of torsion-mounted blade in nuclear plant, we estimate the relation between stress intensity factor range and root mean square roughness in 12% Cr steel by AFM and predict in-service loading condition of turbine blade. failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

Effects of Key Operating Parameters on the Efficiency of Two Types of PEM Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications

  • Kim Han-Sang;Lee Dong-Hun;Min Kyoungdoug;Kim Minsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1018-1026
    • /
    • 2005
  • The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were con­sidered. The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using muli­object variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.