• Title/Summary/Keyword: Automotive Components

Search Result 815, Processing Time 0.03 seconds

Accelerated Ultrasonic Fatigue Testing Applications and Research Trends (초음파 가속피로시험 적용 사례 및 연구 동향)

  • Cho, In-Sik;Shin, Choong-Shig;Kim, Jong-Yup;Jeon, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.707-712
    • /
    • 2012
  • Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti-6Al-4V alloy. Hourglass-shaped specimens have been investigated in the range from $10^6$ to $10^9$ cycles at room temperature under completely reversed R = -1 loading conditions,. Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have beenfound to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

Risk Structure Analysis for Cost of Capital : A Demonstrative Study using Financial Indices

  • Ling, Feng;Suzuki, Tomomichi;Ojima, Yoshikazu
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.1-14
    • /
    • 2006
  • Economic value added (EVA) is introduced on two levels: as index for evaluation of corporation and as index for evaluation of business unit. In the latter case, application of one and the same cost of capital to all business units of a business corporation may be possible, but it is a fundamental policy for EVA to apply different cost of capital to business units with different risks. Estimate of cost of capital of business units is a problem to be resolved. The author, focusing on the question of the estimate of cost of capital of business units, has conducted a demonstrative study on risk structure of cost of capital estimates by using financial indices of Japanese manufacturers (37 automotive industries, 141 electrical and electronic machinery industries, 63 food processing industries, 98 chemical industries, 125 general machinery industries) for a period of 5 years from 1995 to 1999. The author presumes that $\beta$ is explained by a regression formula ${\beta}=B_0+{\Sigma}B_iY_i+{\alpha}$ ($Y_i$: financial indices) and selects 40 explanatory variables from financial statements as risk components. Using their financial indices, the author concludes through a series of statistical analyses that there is a good likelihood of estimating cost of capital for Japanese industries and is convinced that it will lead to more reliable and practical results by assigning averages and variances to 40 primary financial indices for a period of 3 to 5 years selected in this demonstrative study.

Self-healing Engineering Materials: I. Organic Materials (자기치유 공학재료: I. 유기 재료)

  • Choi, Eun-Ji;Wang, Jing;Yoon, Ji-Hwan;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

Performance Analysis of the Parallel CUPID Code for Various Parallel Programming Models in Symmetric Multi-Processing System (Symmetric Multi-Processing 시스템에서 다양한 병렬 기법 모델을 적용한 병렬 CUPID 코드의 성능분석)

  • Jeon, Byoung Jin;Lee, Jae Ryong;Yoon, Han Young;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • A parallelization of the bi-conjugate gradient solver for the pressure equation of the CUPID (component unstructured program for interfacial dynamics) code, which was developed for analyzing the components of a pressurized water-cooled reactor, was studied in a symmetric multi-processing system. The parallel performance was investigated for three typical parallel programming models (MPI, OpenMP, Hybrid) by solving incompressible backward-facing step flow at various grid resolutions. It was confirmed that parallel performance was low when problem size was small or the memory requirement for each thread was considerably higher than the cache memory. Furthermore, it was shown that MPI was better than OpenMP regardless of the problem size, and Hybrid was the best when the number of threads was relatively small.

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

Modeling and Implementation of the Affordance-based Human-Machine Collaborative System (어포던스 기반의 인간-기계 협업 모델을 이용한 제조 시스템 구현 연구)

  • Oh, Yeong Gwang;Ju, Ikchan;Lee, Wooyeol;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • Modeling and control of human-involved manufacturing systems poses a huge challenge on how to model all possible interactions among system components within the time and space dimensions. As the manufacturing environment are getting complicated, the importance of human in the manufacturing system is getting more and more spotlighted to incorporate the manufacturing flexibility. This paper presents a formal modeling methodology of affordance-based MPSG (Message-based Part State Graph) for a human-machine collaboration system incorporating supervisory control scheme for flexible manufacturing systems in automotive industry. Basically, we intend to extend the existing model of affordance-based MPSG to the real industrial application of humanmachine cooperative environments. The suggested extension with the real industrial example is illustrated in three steps; first, the manufacturing process and relevant data are analyzed in perspectives of MABA-MABA and the supervisory control; second, the manufacturing processes and task allocation between human and machine are mapped onto the concept of MABA-MABA; and the last, the affordance-based MPSG of humanmachine collaboration for the manufacturing process is presented with UMLs for verification.

A Study on Fretting Fatigue Characteristic of SCM 420 Steel (SCM 420강의 프레팅 피로 특성에 관한 연구)

  • Kim, T.G.;Kim, H.S.;Yoon, S.J.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Fretting fatigue behavior of SCM420 steel commonly used in the automotive industry for structural applications was investigated in this study. In addition, the effect of bridge pad on the fretting fatigue test was evaluated from different pad materials and following conclusions were drawn. Simple fatigue limit of SCM 420 steel was determined to be 350 MPa while this value was 225 MPa and 285.5 MPa with SCM420H and with SM45C pad, respectively. Reduction in fatigue limit was, thus found to be 35.7% and 17.9% with SCM 420H pad and SM45C pad, respectively. Results of fracture surface observation revealed that typical striation pattern of fatigue failure existed as well as dimpled and cleavage frature appearance was found in final fractured region. From the EDS compositional analysis, test sample and pad part all had high signals for oxygen and iron, suggesting that worn particles might be iron oxide, although exact chemical composition has to be confirmed. Considerable reduction in fatigue life was apparent in SCM 420 steel under fretting fatigue against simple fatigue. Such reduced fatigue life by fretting damage should be considered as an important factor not only in the viewpoint of repairing but also inevitably in the design stage of structural components.

Development of Analysis Model for High-Performance Heat Pump (고성능 히트펌프 해석모델 개발 연구)

  • Yim, Sang-Sik;Kim, Ki-Bum;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6053-6059
    • /
    • 2013
  • Heat pumps have attracted considerable attention as a green energy system because they use renewable energy, such as geothermal, solar energy and waste heat, and can have a low electricity consumption rate compared to other conventional electric heating system. Many studies of high efficient heat pump system design was performed previously,but it is not easy to find any an analytical model that consists of components (e.g. compressor, heat exchangers, and expansion valve), not only having an interrelation and interconnection each other but also being flexible to any change in geometry and operating parameters. In this study, a computational model was developed for a heat pump with warm air as a heat source using the one-dimensional modeling software, AMESim. In combination with an independently-developed analytical model for a scroll compressor, the heat pump model can simulate the physical characteristics and actual behavior of the heat pump precisely. In addition, the reliability of the model was improved by verifying the simulation results using experimental data. The simulation data fell into the 10% error range compared with the experimental data. The heat pump model can be used for system optimization studies of product development and applied to other applications in a range of industrial field.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.