• 제목/요약/키워드: Automorphism

검색결과 161건 처리시간 0.021초

NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

  • Sim, Hyo-Seob;Kim, Young-Won
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.317-324
    • /
    • 2001
  • A Cayley graph of a finite group G is called normal edge-transitive if its automorphism group has a subgroup which both normalized G and acts transitively on edges. In this paper, we consider Cayley graphs of finite cyclic groups, namely, finite circulant graphs. We characterize the normal edge-transitive circulant graphs and determine the normal edge-transitive circulant graphs of prime power order in terms of lexicographic products.

  • PDF

THE HOMOLOGY HOMOMORPHISM INDUCED BY HARER MAP

  • Lee, Deogju;Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.409-421
    • /
    • 2011
  • We study a natural map from the braid group to the mapping class group which is called Harer map. It is rather new and different from the classical map which was studied in 1980's by F. Cohen, J. Harer et al. We show that this map is homologically trivial for most coefficients by using the fact that this map factors through the symmetric group.

HYPERSURFACES IN A 6-DIMENSIONAL SPHERE

  • Hashimoto, Hideya;Funabashi, Shoichi
    • 대한수학회지
    • /
    • 제34권1호
    • /
    • pp.23-42
    • /
    • 1997
  • A 6-dimensional sphere considered as a homogeneous space $G_2/SU(3)$ where $G_2$ is the group of automorphism of the octonians O. From this representation, we can define an almost comlex structure on a 6-dimensional sphere by making use of the vector cross product of the octonians. Also it is known that a homogeneous space $G_2/U(2)$ coincides with the Grassmann manifold of oriented 2-planes of a 7-dimensional Euclidean space.

  • PDF

SPLITTINGS FOR THE BRAID-PERMUTATION GROUP

  • Jeong, Chan-Seok;Song, Yong-Jin
    • 대한수학회지
    • /
    • 제40권2호
    • /
    • pp.179-193
    • /
    • 2003
  • The braid-permutation group is a group of welded braids which is the extension of Artin's braid groups by the symmetric groups. It is also described as a subgroup of the automorphism group of a free group. We also show that the plus-construction of the classifying space of the infinite braid-permutation group has the following two types of splittings BBP(equation omitted) B∑(equation omitted) $\times$ X, BBP(equation omitted) B $^{+}$$\times$ Y=S$^1$$\times$Y, where X, Y are some spaces.

SYMMETRIES OF PARTIAL DIFFERENTIAL EQUATIONS

  • Gaussier, Herve;Merker, Joel
    • 대한수학회지
    • /
    • 제40권3호
    • /
    • pp.517-561
    • /
    • 2003
  • We establish a link between the study of completely integrable systems of partial differential equations and the study of generic submanifolds in $\mathbb{C}$. Using the recent developments of Cauchy-Riemann geometry we provide the set of symmetries of such a system with a Lie group structure. Finally we determine the precise upper bound of the dimension of this Lie group for some specific systems of partial differential equations.

COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES

  • Kim, Kang-Tae;Krantz, Steven G.
    • 대한수학회보
    • /
    • 제45권3호
    • /
    • pp.523-561
    • /
    • 2008
  • The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.

HARMONIC MAPS BETWEEN THE GROUP OF AUTOMORPHISMS OF THE QUATERNION ALGEBRA

  • Kim, Pu-Young;Park, Joon-Sik;Pyo, Yong-Soo
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.331-339
    • /
    • 2012
  • In this paper, let Q be the real quaternion algebra which consists of all quaternionic numbers, and let G be the Lie group of all automorphisms of the algebra Q. Assume that g is an arbitrary given left invariant Riemannian metric on the Lie group G. Then, we obtain a necessary and sufficient condition for an automorphism of the group G to be harmonic.

SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

  • Jang, Junmyeong
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.321-326
    • /
    • 2014
  • In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

THE GENERALIZED WITT ALGEBRAS USING ADDITIVE MAPS I

  • Nam, Ki-Bong
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.233-238
    • /
    • 1999
  • Kawamoto generalized the Witt algebra using F[${X_1}^{\pm1},....{X_n}^{\pm1}$] instead of F[x1,…, xn]. We construct the generalized Witt algebra $W_{g,h,n}$ by using additive mappings g, h from a set of integers into a field F of characteristic zero. We show that the Lie algebra $W_{g,h,n}$ is simple if a g and h are injective, and also the Lie algebra $W_{g,h,n}$ has no ad-digonalizable elements.

  • PDF