Browse > Article
http://dx.doi.org/10.4134/BKMS.b170791

THE CLASSIFICATION OF SELF-DUAL CODES OVER GALOIS RINGS OF LENGTH 4  

Choi, Whan-Hyuk (Department of Mathematics Kangwon National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.5, 2018 , pp. 1371-1387 More about this Journal
Abstract
The classification of the self-dual codes over Galois rings GR(p, 2) and $GR(p^2,2)$ of length 4 is completed for all primes p up to equivalence in terms of automorphism group. We obtain all inequivalent classes and the number of each classes of self-dual codes for all primes.
Keywords
self-dual codes; classification; Galois ring; mass formula;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. H. Park, The classification of self-dual modular codes, Finite Fields Appl. 17 (2011), no. 5, 442-460.   DOI
2 V. Pless, The number of isotropic subspaces in a finite geometry, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 39 (1965), 418-421.
3 Z.-X. Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
4 W.-H. Choi and Y. H. Park, Self-dual codes over ${\mathbb{Z}}_{p^2}$ of small lengths, Korean J. Math. 25 (2017), no. 3, 379-388.   DOI
5 S. T. Dougherty, J.-L. Kim, and H. Liu, Constructions of self-dual codes over finite commutative chain rings, Int. J. Inf. Coding Theory 1 (2010), no. 2, 171-190.   DOI
6 S. T. Dougherty and Y. H. Park, Codes over the p-adic integers, Des. Codes Cryptogr. 39 (2006), no. 1, 65-80.   DOI
7 S. Han, J.-L. Kim, H. Lee, and Y. Lee, Construction of quasi-cyclic self-dual codes, Finite Fields Appl. 18 (2012), no. 3, 613-633.   DOI
8 F. Q. Gouvea, p-Adic Numbers, second edition, Universitext, Springer-Verlag, Berlin, 1997.
9 R. W. Hamming, Error detecting and error correcting codes, Bell System Tech. J. 29 (1950), 147-160.   DOI
10 A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319.   DOI
11 W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
12 J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247-258.   DOI
13 J.-L. Kim and Y. Lee, An efficient construction of self-dual codes, Bull. Korean Math. Soc. 52 (2015), no. 3, 915-923.   DOI
14 S. Lang, Algebraic Number Theory, second edition, Graduate Texts in Mathematics, 110, Springer-Verlag, New York, 1994.
15 R. Lidl and H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
16 B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
17 W.-H. Choi, Mass formula of self-dual codes over Galois rings GR($p^2$, 2), Korean J. Math. 24 (2016), no. 4, 751-764.   DOI
18 G. H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory 46 (2000), no. 3, 1060-1067.   DOI
19 G. H. Norton and A. Salagean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 6, 489-506.   DOI