• Title/Summary/Keyword: Automation with Human

Search Result 237, Processing Time 0.029 seconds

A Theoretical Study on the Toyota Production System and Practical Example (도요타 생산방식(TPS)의 이론과 실제)

  • Lim, Jae-Hwa;Mok, Jin-Hwan
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.171-190
    • /
    • 2006
  • Toyota 2005 annual report said Toyota has six consecutive fiscal year positive revenues and record breaking revenues during recent four consecutive years. Net profit is 11% grower than last year. (\11,000,000,000,000). In the spotlight they have record breaking net profit every year, their strongest point is their unique production system which come up with MUDA(waste) free and ongoing improvement activity. Their basic production philosophy is value added through improve production efficiency which can be possible by eliminating MUDA(waste). This basic philosophy's key points are "Just in Time" and "Automation with human". Recently, Korean manufacturing companies and service companies have a growing interest in Toyota Production System. They try to find ways for appling Toyota system to their companies. Through observing Toyota production theory, understand Toyota Production System, Through studying practical application in industrial fields, examine application possibility for Korean industry and more detailed researches are required.

  • PDF

Understanding Watching Patterns of Live TV Programs on Mobile Devices: A Content Centric Perspective

  • Li, Yuheng;Zhao, Qianchuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3635-3654
    • /
    • 2015
  • With the rapid development of smart devices and mobile Internet, the video application plays an increasingly important role on mobile devices. Understanding user behavior patterns is critical for optimized operation of mobile live streaming systems. On the other hand, volume based billing models on cloud services make it easier for video service providers to scale their services as well as to reduce the waste from oversized service capacities. In this paper, the watching behaviors of a commercial mobile live streaming system are studied in a content-centric manner. Our analysis captures the intrinsic correlation existing between popularity and watching intensity of programs due to the synchronized watching behaviors with program schedule. The watching pattern is further used to estimate traffic volume generated by the program, which is useful on data volume capacity reservation and billing strategy selection in cloud services. The traffic range of programs is estimated based on a naive popularity prediction. In cross validation, the traffic ranges of around 94% of programs are successfully estimated. In high popularity programs (>20000 viewers), the overestimated traffic is less than 15% of real happened traffic when using upper bound to estimate program traffic.

Study of 7 Degree of Freedom Desktop Master Arm (7자유도 탁상식 마스터 암의 설계 연구)

  • Choi, Hyeungsik;Lee, Dong-Jun;Ha, Kyung-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • In this research, a novel mater arm was studied as a teaching device for an underwater revolute robot arm used as a slave arm. The master arm was designed to be a seven-degree-of-freedom (DOF) structure, with a structure similar to that of the slave arm, and to be desktop size to allow it to be worn on a human arm. The master arm with encoders on the joints was used as an input device for teaching a slave robot arm. In addition, small electric magnets were installed at the joints of the master arm to generate the haptic force. A control system was designed to sense excessive force and torque in the joints of the master arm and protect it by controlling the position and velocity of the slave arm through the encoder signal of the master arm.

Human Arm Posture Control Using the Impedance Controllability of the Musculo-Skeletal System Against the Alteration of the Environments

  • Kim, Jaehyo;Makoto Sato;Yasuharu Koike
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • We show that humans execute the postural control ingeniously by regulating the impedance properties of the musculo-skeletal system as the motor command against the alteration of the environment. Adjusting muscle activity can control the impedance properties of the musculo-skeletal system. To quantify the changes in human arm viscoelasticity on the vertical plane during interaction with the environment, we asked our subject to hold an object. By utilizing surface electromyographic(EMG) studies, we determined a relationship between the perturbation and a time-varying muscle co-activation. Our study showed when the subject lifts the object by himself the muscle stiffness increases while the torque remains the same just before the lift-off. These results suggest that the central nervous system(CNS) simultaneously controls not only the equilibrium point(EP) and the torque, but also the muscle stiffness as themotor command in posture control during the contact task.

Feasible Scaled Region of Teleoperation Based on the Unconditional Stability

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • Applications of scaled telemanipulation into micro or nano world that shows many different features from directly human interfaced tools have been increased continuously. Here, we have to consider many aspects of scaling such as force, position, and impedance. For instance, what will be the possible range of force and position scaling with a specific level of performance and stability\ulcorner This knowledge of feasible staling region can be critical to human operator safety. In this paper, we show the upper bound of the product of force and position scaling and simulation results of 1DOF scaled system by using the Llewellyn's unconditional stability in continuous and discrete domain showing the effect of sampling rate.

Intelligent systems for control

  • Erickson, Jon D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.4-12
    • /
    • 1996
  • This keynote presentation covers the subject of intelligent systems development for monitoring and control in various NASA space applications. Similar intelligent systems technology also has applications in terrestrial commercial applications. Discussion will be given of the general approach of intelligent systems and description given of intelligent systems under prototype development for possible use in Space Shuttle Upgrade, in the Experimental Crew Return. Vehicle, and in free-flying space robotic cameras to provide autonomy to these spacecraft with flexible human intervention, if desired or needed. Development of intelligent system monitoring and control for regenerative life support subsystems such as NASA's human rated Bio-PLEX test facility is also described. A video showing two recent world's firsts in real-time vision-guided robotic arm and hand grasping of tumbling and translating complex shaped objects in micro-gravity will also be shown.

  • PDF

A Self-Designing Method of Behaviors in Behavior-Based Robotics (행위 기반 로봇에서의 행위의 자동 설계 기법)

  • Yun, Do-Yeong;O, Sang-Rok;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.607-612
    • /
    • 2002
  • An automatic design method of behaviors in behavior-based robotics is proposed. With this method, a robot can design its behaviors by itself without aids of human designer. Automating design procedure of behaviors can make the human designer free from somewhat tedious endeavor that requires to predict all possible situations in which the robot will work and to design a suitable behavior for each situation. A simple reinforcement learning strategy is the main frame of this method and the key parameter of the learning process is significant change of reward value. A successful application to mobile robot navigation is reported too.

An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations (스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구)

  • Suh, Suk-Hwan;Woo, In-Kee
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

Study on Automatic Human Body Temperature Measurement System Based on Internet of Things

  • Quoc Cuong Nguyen;Quoc Huy Nguyen;Jaesang Cha
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.50-58
    • /
    • 2024
  • Body temperature plays an important role in medicine, some diseases are characterized by changes in human body temperature. Monitoring body temperature also allows doctors to monitor the effectiveness of medical treatments. Accurate body temperature measurement is key to detecting fevers, especially fevers related to infection with the SARS-CoV-2 virus that caused the recent Covid-19 pandemic in the world. The solution of measuring body temperature using a thermal camera is fast but has a high cost and is not suitable for some organizations with difficult economic conditions today. Use a medical thermometer to measure body temperature directly for a slow rate, making it easier to spread disease from person to person. In this paper, we propose a completely automatic body temperature measurement system that can adjust the height according to the person taking the measurement, has a measurement logging system and is monitored via the internet. Experimental results show that the proposed method has successfully created a fully automatic human body measurement system. Furthermore, this research also helps the school's scientists and students gain more knowledge and experience to apply Internet of Things technology in real life.