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Abstract 
 

With the rapid development of smart devices and mobile Internet, the video application plays 

an increasingly important role on mobile devices. Understanding user behavior patterns is 

critical for optimized operation of mobile live streaming systems. On the other hand, volume 

based billing models on cloud services make it easier for video service providers to scale their 

services as well as to reduce the waste from oversized service capacities. In this paper, the 

watching behaviors of a commercial mobile live streaming system are studied in a 

content-centric manner. Our analysis captures the intrinsic correlation existing between 

popularity and watching intensity of programs due to the synchronized watching behaviors 

with program schedule. The watching pattern is further used to estimate traffic volume 

generated by the program, which is useful on data volume capacity reservation and billing 

strategy selection in cloud services. The traffic range of programs is estimated based on a 

naïve popularity prediction. In cross validation, the traffic ranges of around 94% of programs 

are successfully estimated. In high popularity programs (>20000 viewers), the overestimated 

traffic is less than 15% of real happened traffic when using upper bound to estimate program 

traffic.  
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1. Introduction 

Audience behavior pattern is one of the fundamental problems in mass media, which is the 

basis of program production, scheduling and advertising. Recent years, much attention is paid 

on network video streaming services from both practical and academic perspectives [1,2]. 

With the proliferation of smart devices, mobile video is booming and changed the landscape of 

mass media. More people tend to watch TV on mobile devices, especially young people [3]. 

From the technical perspective, mobile video already represented half of mobile Internet data 

at the beginning of 2012, and will grow at a CAGR of 69% between 2013 and 2018 according 

to Cisco's forecast [4]. The traffic of video service comes from watching behaviors of its 

audience, and makes up large proportion of cost of the service. Characterizing user watching 

behaviors has a great importance on system simulation [5–7], traffic planning [8–10], and 

optimization of system design [11–13]  of video services. 

Acquiring accurate large scale behavioral data of traditional TV relies on phone survey or 

people-meter logs from a small group of audience that it is impossible to collect data in a large 

scale and may lead to inaccurate estimations. In network based media systems, it is possible to 

collect usage data from the whole audience population for the first time. Generally network 

based video services falls into two categories: live streaming and video-on-demand (VoD). 

Live streaming service, including IPTV and on-line live streaming, is similar to the traditional 

TV broadcasting. Video content on live streaming is only available when it is broadcast on the 

channel. Viewers have to join the channel when the program is on the channel to watch it. On 

the other hand, VoD provide the service for pre-recorded contents to users that the content is 

available any time. Measurements are adopted on various types of services, including online 

live streaming systems [13–15], IPTV systems using set-top boxes [5,16–18], as well as VoD 

systems [19–23]. Most recent studies about video streaming on mobile devices focus on VoD 

systems [22,24–26], whereas live streaming on mobile devices are with much less studies [27]. 

Since this paper falls into the category of live streaming, we will concentrate on live streaming 

in the rest of the paper.  

Channel popularity measured by number of accesses and length of each access (also known 

as session length) are two important aspects of watching patterns in live streaming system. 

Most existing measurement studies concerned both aspects, while only a few studied the 

relationship between them. Longer overall session length in popular channels is reported in 

PPLive [14] by comparing the CDF of session length distribution of a popular channels with 

an unpopular one. Cha et al. [16] observed higher surfing probability in unpopular channels of 

an IPTV system. Based on calculated correlation coefficient of channel popularity and session 

length, [15] reported weak correlation in online streaming, while little to no correlation is 

reported in a recent study of commercial IPTV [17]. 

Intuitively, it is the program on a channel rather than the channel itself attracting users to 

watch. [5] reported spikes of user joining/departure events on IPTV channels caused by the 

beginning/end of programs, suggesting user behaviors are highly correlated to programs. 

Watching pattern of users should be studied at program level. However, in existing studies on 

IPTV [5,16,17], on-line live streaming [14,15], and our previous measurement study [27], 

watching patterns are studied on the level of channels instead of programs. 

Mobile device provides a good opportunity to understand user engagement in videos.  On 

large screens (PC/IPTV), logged watching behaviors on one device might be a shared 

experience of several viewers. In contrast to large screens, mobile watching is a more personal 
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experience that the device can directly correspond to its owner. Viewers have to keep the 

playback in foreground and it is unlikely for them to leave their mobile devices unattended as 

they do on large screens [16]. The playback time is more likely to be the actual watching time 

of the viewer.  

On the other hand, video streaming is a traffic intensive service. Traditionally, the video 

service provider has to rent large enough bandwidth upfront to fulfill the demands of the 

audience at peak hours, while most of the rented bandwidth is idle as there are not many 

viewers most of the time. What is more, some live services only broadcast specific events. 

Cloud services provide more flexible options for content distribution that video service 

providers do not need to oversize their infrastructures any more. The cloud-centric system 

design for media services receives more and more attention in recent years [28,29]. From the 

system operation perspective, there are various billing models of public cloud services. In the 

traffic volume based billing models adopted by main stream cloud services [30], the cloud 

service will auto scale the bandwidth on edge servers to fulfill requests from users, and it is no 

need for content providers to actively allocate bandwidth capacity in traffic volume based 

models. Amazon CloudFront provides on-demand and reserved capacity options for 

transferred traffic volume [30].  The leading cloud service provider in China, Ali Cloud [31], 

provides various options to its customers, the usage can be charged by the peak bandwidth in 

the granularity of day or the traffic volume at the granularity of hour. Generally, discounts are 

designed for reserved capacity in traffic volume based billing models. Thus, the estimation of 

traffic generated by video contents is important for video service providers to choose proper 

cloud service billing options to save distribution costs. Existing traffic prediction methods of 

video services focus on the dynamics of bandwidth requirements in the near future using time 

series analysis methods [8], which require large amount of historical data of bandwidth 

dynamics.  

In this paper, we focus on the watching pattern of live TV programs on mobile devices with 

a content-centric manner to study the total watching time and traffic volume generated in 

programs rather than user behaviors on channel level. The watching pattern is further utilized 

to estimate traffic volume generated by the program, which is useful on data volume capacity 

reservation as well as billing model selection in cloud services. The analysis of watching 

pattern is based on realistic data collected from a large scale commercial mobile live TV 

system which broadcasts satellite TV channels in China on mobile devices. We find that the 

total watching time of long entertainment genre programs which contributes major proportion 

at traffic peaks distributed in a linear band with increasing program audience size, where the 

slope of the band is the maximum watching intensity among all the programs. A strong 

correlation is observed between program popularity and watching intensity. There are both 

programs with low and high watching intensity among unpopular programs, whereas all the 

popular programs are with high watching intensity. It turns out the content-aware analysis is 

able to capture the correlation between popularity and watching intensity in programs. 

We propose a program traffic range estimation framework based on watching patterns of 

mobile TV, which is suitable for traffic volume reservation on cloud services using traffic 

volume based billing models. The impact of popularity error on traffic range is analyzed, and 

cross validation is adopted to verify results of popularity prediction and traffic range 

estimation. It successfully forecasts the traffic range of over 90% of programs. The average 

over-provisioned traffic is lower than 15% of program traffic in popular programs when the 

estimated upper traffic bound is used to reserve service capacity. 

The remainder of this paper is organized as follows. Section 2 gives an overview of the 

system and the dataset. Program watching patterns are presented and analyzed in Section 3. In 
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Section 4, watching patterns of programs are exploited to forecast program traffic range. Error 

analysis and cross validation are presentated as well. Finally, we discuss implications from our 

findings and conclude the paper in section 5. 

2. Preliminaries 

2.1 System Background 

We study a mobile video streaming system “Dopool TV”
1
, which provides free on-line TV 

live streaming of more than 350 channels covering most satellite TV channels in China on 

mobile devices. To some extent, it is a substitution of conventional TV on mobile devices, 

since many channels on it are broadcast simultaneously on TV. It adopts HTTP Live 

Streaming to transfer video contents to various types of mobile devices running iOS, Android 

system. Live video signals are encoded in H.264/AAC format with resolution of 320×240 at 

256 kbps for video and 64kbps for audio on encoding servers. Channels are with single bitrate 

that bitrate adaptation is not applied in the system. The system uses a C/S architecture, and 

CDN is used to distribute video contents to viewers. Requests from clients are dispatched to 

different edge servers with DNS-based request routing. 

The player software offers a channel catalogue, on which EPG (Electronic Program Guide) 

information is shown along with channel names. Users may choose from the catalogue or 

search for channels to play. It does not provide functionalities of pause and seeking in live 

streaming.  

 
Fig. 1. System architecture of Dopool TV 

2.2 Log Collection 

To study user behaviors at program level, we integrate the watching trace of users with EPG 

information of TV programs. 

The watching trace is reported by Dopool TV players at the start and end of playing. 

Playback sessions are distinguished by the watcher, the channel, starting time, and the duration 

                                                      

 
1 http://www.dopool.com/?page_id=986 
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of the session. The watcher is defined by a universal unique ID that is assigned to each copy of 

the player and remains the same on the device. The watching length does not count the 

buffering time of the video. For privacy concern, the ID of the watcher is a random globally 

unique identifier, and the player will not collect any information related to the owner of the 

device. Clients also report other information such as network connection type, IP addresses in 

the trace.  

The system does not keep the EPG data of channels. The EPG dataset is a program table of 

channels collected from TVMAO
2
, a website providing schedule and detailed introduction of 

TV programs in China. Each EPG entry includes: channel, start time, end time, title, and genre 

of the program. The three item tuple (channel, start time, end time) defines a TV program, 

whose content is described by its title and genre. Genres provide a good granularity to put 

similar programs together as well as to distinguish different types of programs. 

We integrate watching session data and EPG data by correlating starting time of sessions 

with program periods. If a playback session covers the period on the corresponding channel of 

a program, then the playback is considered as a playback session of the program. We further 

aggregate the length of playback sessions of the same watcher by programs to the time spent 

on viewing (TSV). TSV is the total time of the viewer spent on the channel within the program 

period. The watcher may switch network connection between 3G or WiFi, or respond to 

messages received by the device, resulting in multiple sessions in the program. We focus on 

the TSV in programs because it reflects the interests of the watcher to the program content, and 

insensitive to interruptions caused by the device, network and in-program commercial breaks. 

2.3 Data Overview 

The watching time and EPG data covers a period from November 24th to December 31st, 2012. 

Among the watching time data, we pick all the long entertainment shows with length ranging 

from 105 to 120 minutes on the top 15 channels that form the dataset for analysis. The 

statistics of the dataset are listed in Table 1. 

We focus on the top 15 channels because of the availability of matched EPG data. The top 

15 channels are satellite public TV channels accounting for around 70% of active devices, 

covering most popular main stream shows in China as well as some unpopular ones. 

Entertainment shows are chosen because entertainment is the main motivation of users' 

engagement in mobile TV [32]  that remarkable proportion of the mobile TV traffic is from the 

entertainment shows genre. The content pattern of these shows are similar, while other genres, 

take TV series for example, may have many sub-genres like Sci-Fi, Actions, Crime, etc. 

Moreover, the content of entertainment shows is generally independent to previous episodes. 

Thus, correlations among selected programs are not considered. The program length is limited 

to the range between 105 to 120 minutes, which is about two hours. This length range covers 

most popular main stream entertainment shows in China, which are typically broadcast at the 

evenings of weekends. Among all the entertainment programs, these 100 programs contribute 

59.1% of accesses and 69.5% of total watching time. In the weekly traffic peak happened in 

weekend evenings in the top channels, traffic from these programs occupies a proportion of 

71.9%. Understanding the watching pattern of these shows will be helpful to understand the 

peak traffic. Because users cannot control playback progress in live streaming, a relative long 

program length is good for collecting enough samples as well. 

                                                      

 
2 http://www.tvmao.com 
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Since factors such as program length, content pattern, and correlation among programs are 

eliminated, the long entertainment shows provide good samples to study the impact of content 

popularity on its total watching time. It is also meaningful from the traffic perspective in that 

the samples play an important role in peak traffic. In the rest part of the paper, we use the 

aggregated watching time records (TSV) from sessions in long entertainment shows as the 

dataset to study user watching patterns.  

 
Table 1. Overview of watching data used in the paper 

Num. 

Programs 

Len. Of  

Programs  

(min) 

Num. 

Devices 

Num. 

Sessions 

Num.  

TSV 

records 

Total 

watching 

Times (s) 

Ratio of  

weekly  

peak traffic 

100 105 - 120 5.06×10
5
 1.29×10

6
 7.45×10

5
 6.18×10

8
 71.9% 

 

3. Watching patterns of programs 

We focus our analysis on 100 representative long entertainment shows from popular channels 

on Dopool mobile TV dataset. These programs are all from the most populous channels that 

the sample size could support our analysis. Entertainment programs with length around 2 

hours are chosen to avoid the impact of type and length of programs. We believe it is 

representative for online live event broadcasting to mobile devices. 

Audience watching pattern is studied by viewer at program level. The popularity of a 

program is defined as the number of viewers engaged in the program, denoted by x . The time 

spent watching (TSV) of a user for a program is the aggregated duration of watching time 

during the period of the program. It represents the total length of watched program content and 

total network traffic generated by the watching behavior, as bitrate adaptation is not applied in 

the system. In contrast to single playback session, it is insensitive to commercial breaks. The 

watching intensity of a program, denoted by w , is defined as the per-capita TSV of audience 

who watched it. The total watching time, denoted by y , is the sum of all the time spent on the 

program of all the viewers. It can be converted to the total network traffic generated by 

watching behaviors given the video bitrate. 

3.1 Watching time of viewers at program level 

We rank programs by their popularity, and then plot their popularity against their ranks in Fig. 

2 in log-scales. Program popularity exhibits some power law properties with a dropped tail, 

where 0.88~x i  shown as the red dashed line in the figure. Audience attention is concentrate 

on a small number of programs, while the audience size in most programs is small. 

The total watching time is plotted against the popularity of programs as scatter plot in Fig. 3. 

Each point represents a program. It is obvious i i iy w x , where i  is the identifier of program 

and the watching intensity iw  is the slope to the origin. 

The minimum and maximum of iw  in our data are min 179.89w  seconds and 

max 1258.43w  seconds. These two observed extreme values are used as minimum and 

maximum baselines of watching intensity of such type of programs. The guide lines L1 and L2 

are maxy w x  and miny w x , representing the maximum and minimum possible watching 

time of program with popularity x  according the two baselines of watching intensity. 
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However, the total watching time of programs are distributed in a band below L1 rather than in 

the whole area bounded by L1 and L2. The Pearson correlation coefficient between ix  and iy  

is 0.9876r  , suggesting linear relationship can be used to describe the data. 

 
Fig. 2. Program popularity vs. program rank 

 

We use linear upper and lower bounds to describe the band area in Fig. 3. The upper bound 

and lower bound of the total watching time of a program with x  viewers are denoted by 

U ( )Y x  and  L ( )Y x  respectively. As our data exhibits linear relationship between y  and x , a 

linear form U 0 1( )Y x x    is used for the upper bound, where parameters are decided by the 

optimal solution of the LP problem in Eq. (1). The constrain U (0) 0Y   comes from the fact 

that no watching time is generated if there are no viewers. 

 

0 1

U
,

U

U

minimize ( )

( )

(0) 0

i i

i

i is

Y x y

Y x yubject to

Y

 







      (1) 

 

The optimal solution * *
0 1 max0, w    gives the upper bound in Eq. (2). 

 

U max( )Y x w x        (2) 

 

The lower bound L ( )Y x  is given by a piecewise linear function having the form 

 L min 0 1( ) max , , 0Y x w x x x    . The first term minw x  is controlled by minimum average 

watching time of this type of program, as line L2 in Fig. 3. The latter term describes the lower 

bound of the band when x becomes large, as the line L3. Parameter 0  and 1  are determined 

by the optimal problem Eq. (3). The constrain *
1 1   guarantees L U( ) ( )Y x Y x  for all 

0x  . 
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The optimal solution of the problem gives * 6
0 7.48 10    , and *

1 maxw  . As * *
1 1  , 

L1 is parallel to L3, and the gap is constant *
0 0y   . The value of 0y  is actually decided by 

the active constrain of Eq. (3), which corresponds to the program on the lower bound.  L2 and 

L3 intersect at 0 max min/ ( ) 6933.9cx y w w   , thus L ( )Y x  can be rewritten as Eq. (4). 

 

min

L

max 0

0
( )

c

c

w x x x
Y x

w x y x x

 
 

 
     (4) 

 

The upper and lower bounds of total watching time are plotted in Fig. 3 as solid and dashed 

lines in different colors. 

 

 
Fig. 3. Total watching time against popularity of entertainment programs. Each point represents a 

program. Guide lines L1, L2, and L3 are plotted in red dotted lines. 

 

Total watching time is the cumulated TSV of its audience that is related to the size of its 

audience (popularity) and the watching intensity representing the average TSV of audience. 

Intuitively, higher watching intensity of a program means that its audience tends to stay longer 

in it. The watching intensity bounds of a program at a given popularity x  can be derived from 

the bounds of watching time in Eq. (2) and Eq. (4), which have forms in Eq. (5) and Eq. (6), 

respectively. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO.9, Sep. 2015                                                 3643 

U
U max

( )
( ) 0

Y x
W x w x

x
         (5) 

min
L

L

max max min

0
( )

( )
( )

c

c
c

w x x
Y x

W x x
x w w w x x

x

 


  
  



   (6) 

 

The lower and upper bounds are depicted in Fig. 4 as solid and dashed lines, respectively. 

When cx x , the second term of L ( )W x  represents the gap between the two bounds of 

watching intensity. It decreases reciprocally with increasing popularity x . As a consequence, 

the average watching time of hot programs are near maxw .  

 
Fig. 4. Watching intensity of programs 

 

3.2 The impact of programs on the watching pattern 

To investigate the impact of programs on the watching pattern, we further examine departures 

of viewers in programs. The departure time of a viewer is the end time of her last playback 

session of the program. Obviously, a viewer tends to stay in a program, if she is attracted by 

the program content. Synchronized departures are observed near the end of programs. In 

programs with more than 10000 viewers, on average there are 25.1% of viewers departs in the 

last 10 minutes of the program, and these viewers contribute on average 51.8% of the total 

watching time of the program. In programs with lower popularity (popularity < 10000), the 

mean ratio of audience departs at the end of the program is 16.6%, and on average they 

contribute 33.3% of program watching time. The fact that considerable proportion of audience 

tend to watch to the end of the program reflects that watching behaviors is synchronized to 

video contents, especially in popular programs. The synchronized departures suggest that the 

program is the motivation of watching for users. Larger proportion of audience watching to the 

end of the program in popular programs also explains the trend of large watching intensity in 

popular programs.  
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The Pearson correlation coefficient between popularity and watching intensity of programs 

0.685r   suggests a strong correlation between the two factors. On the other hand, the 

Pearson correlation coefficient between the number of playback sessions and average 

playback session length of channels 0.225 indicates a weak correlation at channel level, which 

is comparable to the correlation at channel level of online live streaming ( 0.2r  ) [15]. The 

strong correlation at program level suggests that the intrinsic watching pattern of mobile TV 

caused by content can be better captured at program level. 

Based on the observation of synchronized departures and the comparison of correlation 

between popularity and watching intensity, the analysis at program level is able to capture the 

intrinsic pattern of watching behaviors of mobile TV caused by the high correlation of user 

behaviors and the video content.
 

3.3  Discussions 

maxw , minw , and cx  are characteristic variables on describing the mobile TV watching pattern 

and its traffic. The maximum watching intensity maxw  among all the 2 hour long programs is 

around 21 minutes. It characterizes the duration of video consumption on small screens, and 

determines the traffic needed for an increased audience size in our traffic model as well.  

The linear band distributed of program watching time gives the relation between the total 

watching time of a program and its popularity. The biased distribution of program popularity 

together with the watching pattern suggests that the demand of traffic varies in a wide range 

and only a few programs have intensive demand of resources. If the system capacity is planned 

using fixed upfront capacity (as used by Dopool TV), a large proportion of resources will be 

idle most of the time. Cloud services can be adopted to scale the system as well as save 

distribution costs. 

If the program popularity can be estimated before broadcasting, the watching pattern can be 

used to estimate the total watching time and traffic volume generated by viewers. Because the 

width of total watching time range is constant, it may give relative good estimations in popular 

programs. It is useful for reserve traffic capacity in cloud services. We will detail the 

estimation of program traffic in the next section.  

The watching pattern at program level does not exist anymore in the analysis on channels 

without considering the program schedule. The observed watching pattern in programs can be 

attributed to the impact of content because of highly synchronized behaviors with program 

schedule.  

4. Program Traffic Estimation 

As network traffic comes from watching behaviors of the audience, the watching pattern of 

mobile TV can be exploited to forecast traffic volume in programs. Cloud services offer more 

flexible options for video services to scale. The estimated traffic is useful for video service 

provider to reserve cloud data volume to save content distribution costs or supporting billing 

model selection for cloud services.  

According to our previous results, the total watching time of programs are distributed near 

the upper bound which increases linearly as the audience size of the program, and the gap 

between the upper and lower bounds of total program watching time is constant. If program 

popularity could be predicted, program traffic range can be estimated accordingly. 

In this section, the total watching time is used to represent the generated traffic for 

coherence. It can be easily converted to data volume on network using video bit rate. As the bit 
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rate of channels of Dopool TV is 320 kbps (video + audio), each second of video correspond to 

40 kilobytes of transferred data.  

4.1 Prediction of Popularity 

There are many ways to estimate audience rating of TV programs. Traditional methods are 

based on historical data and various measurements of television [33,34], while new methods 

estimate audience rating based on trends of Internet search engines and activities on social 

networks [35,36]. Results of audience rating (i.e. program popularity) estimation methods can 

be used as the input of our traffic estimation framework. As we do not have data of historical 

audience rating or social network trends, we proposed a naive on-line method based on two 

observations of aggregated number of viewers after the program begins. It is still meaningful 

to estimate the traffic volume after observation moments only by the naïve popularity 

estimation. The result of naïve popularity estimation can be used to tune the estimation of 

other program popularity prediction methods as well. 

As lengths of programs differ slightly, the time of programs is normalized as a number from 

0 to 1. The moment 0 and 1 correspond to the beginning and the end of the program, 

respectively. The counting process ( )N t  represents the cumulated number of viewer who 

accessed the program until moment t . If a viewer starts playback multiple times during the 

program, only the first time will be counted in ( )N t . It is obvious (0) 0N   and (1)N x  

from the definition, where x  is the program popularity. Fig. 5 gives the normalized cumulative 

audience size of three representative programs. Since program popularity varies in a wide 

range, the number of cumulative audience size is normalized by (1)N . Different programs are 

distinguished by colors and markers. The red dotted reference line has the slope of 1, which 

corresponds to the constant arrival rate of viewers. The arrival process above the reference line 

indicates there is a higher arrival rate at the beginning of the program, and the arrival rate 

decreases during the program. On contrary, arrival processes below the guideline suggest 

increasing arrival rate during the program. The relative smooth shape of the cumulative 

audience size suggests that the arrival rate of new viewers in programs changes progressively 

rather than abruptly. 

 
Fig. 5. Normalized cumulative audience size of representative programs 
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For simplicity, we use two observations of cumulative number of program viewers to 

estimate the popularity of the program. Let ( ) ( 1,2)k ks N t k  be the observation at kt , 

where the moments 1t , 2t  satisfy 1 20 1t t   . A linear model is proposed to describe the 

relationship between total viewers x  and the two observations 1s  and 2s , as shown in Eq. (7). 

It is able to capture the absolute arrival rate of viewers as well as the first derivative of arrival 

rate in the program. Linear regression is used to estimate parameter 0 , 1 , and 2 . 

 

0 1 1 2 2x s s           (7) 

 

Observation moments 1t  and 2t  may influence the accuracy of popularity estimation, as the 

arrival process of viewers is random. Fig. 6 gives the relationship between the two observation 

points with square root of the variance of random error in the regression (as RMSE in the 

figure). Different colors and markers are used to represent different values of 2t . It can be seen 

that generally the level of RMSE is decided by the values of 2t . More accurate estimation 

could be obtained if 2t  is larger. The residual error is small when 1t  is near 0.12 for 2 0.2t  , 

then the RMSE fluctuates when 1t  is near 0.16. The RMSE rises when 1t  approaches 2t . As 

the watching behaviors happened within 2t  is the sample used to estimate the program 

audience population, the observation period cannot be too long. We restrict the observation 

period within 20% of programs, namely set 2 0.2t  . 1t  is set to 0.12 to acquire relative 

accurate estimation based on the observations in Fig. 6. 
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Fig. 6. Impacts of observation positions on the regression results 

 

Table 2 gives the regression results when observing at 1 0.12t   and 2 0.2t  . The effects 

of the three parameters are all significant. The adjusted 2R  and the significance level of the 

F-statistic suggest the model is valid to describe the relationship between the popularity and 

the two observations of cumulative program audience sizes. 
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Table 2. Linear regression results of program popularity 

Term Estimate Std. Error t-statistic Significance 

0   1153.1449 140.7471 8.193 *** 

1   -11.3972 1.1017 -10.345 *** 

2   10.3327 0.7019 14.720 *** 

Number of samples: 100 

Residual standard error: 1099 (df = 97) 

Adjusted 2R : 0.983 

F-statistic: 2860 (df = 2; 97) *** 
*** ** *0.001, 0.01, 0.05p p p     

 

Leave-one-out cross validation is adopted to validate the linear model for popularity 

prediction. Each time a program is chosen as test sample. The parameters of Eq. (7) are 

estimated from the training set excluding the test sample. Estimation error is calculated as 

ˆ
i i ix x ò , and its distribution is shown in Fig. 7. It turns out ~ (12.33,1140.48)i Nò  with 

0.4794p   given by KS test. The density function of the fitted distribution is plotted as the 

red curve in the figure. 
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Fig. 7. Error of program popularity estimation 

 

4.2 Traffic Estimation based on Predicted Program Popularity 

The lower and upper bounds of program traffic are calculated by Eq. (2) and Eq. (4) based on 

predicted popularity x̂ . The error of popularity prediction will affect the estimation of traffic 

bounds, as the bounds are calculated based on the estimated popularity. We care more about 

the traffic estimation when there are large number of viewers in the program, thus we 

concentrate the analysis on the programs with cx x . With the error of popularity estimation 

x̂ x ò , the estimations of traffic bounds have the form in Eq. (8) and Eq. (9). 
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L L max 0
ˆ ˆ( ) ( )y Y x w x y  ò      (8) 

U U max
ˆ ˆ( ) ( )y Y x w x  ò      (9) 

 

We introduce U ( )u Y x y   to represent the distance of the program's traffic to the upper 

bound, where 00 yu   in observed program traffic data. The distribution of u  is denoted by 

( )uf t , where the empirical density is given as the histogram in Fig. 8. The traffic of most 

programs are distributed in the middle of the two bounds that errors on traffic bounds 

introduced by ò do not necessarily lead to failed estimation of the traffic range. 

The error of popularity estimation ò is assumed to follow a normal distribution (0, )N  , 

with probability density function is ( ) ( / )f t t ò . We say the traffic of a program is 

overestimated if the real traffic is below the estimated lower bound ( L
ˆy y ), whereas the 

traffic is under estimated if the real traffic is above the estimated upper bound ( U
ˆy y ). From 

Eq. (8) and the definition of u , program traffic is overestimated if 0 max( ) /y u w   ò , with 

probability L L
ˆP( ) ( ) 1 ( / )dp y y f t t


 



      ò . Similarly, from Eq. (9), program 

traffic is underestimated if max/u w   ò , with probability 

U U
ˆP( ) ( ) ( /d )p y y f t t



 


     ò . The expectations of the two probabilities depend on 

the distribution of u  among programs, as in Eq. (10) and Eq. (11). 

 

 
0

0
L[ ] 1 ( / ) d ( )E

y

up f t t       (10) 

0

U
0

 [ ] ( / ) ( d)E
y

up f t t        (11) 

 

Using the empirical distribution of u , the expected over/under-estimation probabilities 

under different   is shown in Fig. 9. The standard deviation of the error of our popularity 

prediction 1140.48   is plotted as red dotted vertical line in the figure, where expected 

overestimation probability LE[ ] 9.48%p   and underestimation probability UE[ ] 2.99%p  . 

The expected overestimation probability increases with  much faster than underestimation 

probability. 

If we want to guarantee that the expected out-of-bound probabilities do not surpass a given 

target  , the estimation of traffic bounds need to be extended. We extend the estimated lower 

and upper traffic bounds by Ll and Ul respectively, and have the extended traffic bounds in Eq. 

(12) and Eq. (13). 

 

L L L max 0 L
ˆ( ) ( )y Y x l w x y l    ò      (12) 

U U U max U
ˆ( ) ( )y Y x l w x l   ò      (13) 

 

The expectated out-of-bound probabilities of programs in Eq. (14) and Eq. (15) can be 

derived with similar procedures as in Eq. (10) and Eq. (11). 
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0 0 L
L

0
max

[ ] 1 ( ) ) d(E
y

u

y u l
y y f t t

w 

  
    

 
    (14) 

0 U
U

0
max

 E ] ) ) d[ ( (
y

u

u l
y y f t t

w 


         (15) 

The value of Ll  and Ul  corresponding to LE[ ]y y    and UE[ ]y y    can be 

calculated numerically using the empirical distribution of u with different  . The numeric 

results of *
Ll  and *

Ul  are plotted in Fig. 10 (a) and (b) and represented as multiples of 0y , 

where red dotted line represent 1140.48   of the naïve popularity prediction. Negative 

values of *
Ll  and *

Ul mean the out-of-bound probability is already less than the given target   

at that level of   . Guaranteed out-of-bound probability is acquired in exchage of expanded 

traffic range, which will lead to more over-provisioned data in service capacity reservation. A 

relative accurate popularity estimation is important to forecast program traffic range. 
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Fig. 8. Empirical distribution of u  for popular programs with cx x  

 
Fig. 9. Expected out-of-bound probability under different accuracy of popularity estimation. 
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Fig. 10. Extension of bounds required to achieve the expected out-of-bound probability 

 

4.3 Cross Validation of Traffic Estimation 

Leave-one-out cross validation is adopted to test the estimation of program popularity and 

traffic range. The validation procedure goes through all the programs as follows. Each time a 

program is selected as the test sample, and other programs form the training set. Model 

parameters, including parameters in Eq. (7), (1)  and (3) , are derived from the training set.  

Then the parameters are used to predict the popularity and calculate traffic bounds of the test 

sample. The real value of the test sample is used to validate the estimation results. If the test 

sample satisfies ˆ ˆ( ) ( )L i i U iY x y Y x  , the real value of traffic situated between the estimated 

bounds. Otherwise, the real value is situated out of estimated bounds, and the model failed to 

estimate the traffic range of the program.  

In the cross validation, the real value of traffic of 6 (6% of the total 100) programs are not 

situated in the estimated bounds, as listed in Table 3. d  is defined as the distance of the traffic 

to the nearest bound for out-of-bound programs, as in Eq. (16). Positive values represent 

distances above upper bound, while negative ones represent those below the lower bound. The 

ratio of id  to the gap between the two bounds at x̂  are calculated. The first two programs in 

the table are with popularity cx x , where the gap size is 0y . The distances to the bounds 

from the upper and lower in the two programs correspond to 1.55% and 28.22% of the gap 

between the two bounds. The relative high distance to the lower bound of program is due to the 

over estimation of the program popularity. However, the value out-of-bound distance only 

correspond to 4.67% of the traffic of the program, which is acceptable. 

 

U U

L L

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

i i i i

i

i i i i

y Y x y Y x
d

y Y x y Y x

 
 

 
     (16) 

 

If the upper bound is used to provision service resources in the cross validation, the 

histogram of over-estimated traffic of programs are shown in Fig. 11. Two programs out of the 

0[0, ]y  range correspond to program 2 and 30 in Table 3. The average over provisioned traffic 

is 63.19 10  seconds (solid line in Fig. 11), which is about 42.6% of the gap size 0y , or around 
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15% of the traffic of a program with 20000 viewers. The fraction of over provisioned traffic to 

program traffic will be even lower in popular programs with larger audience size. 

 
Table 3. Programs with estimated traffic out of bounds 

i  ix  iò  iy  id  % of gap 

2 40147 3364.322 45167140.4 -2110345.342 -28.22% 

30 22443 -2987.6105 24598899.3 115660.576 1.55% 

38 3715 -116.3816 668302 -22811.718 -0.59% 

51 331 1001.2665 231665.5 -7999.744 -0.56% 

59 647 998.0026 290885.7 -5038.478 -0.28% 

78 614 970.1464 279502.3 -5474.322 -0.32% 

 

 
Fig. 11. Overestimated traffic using upper bound. Red dashed lines corresponds to 0 and the gap 0y . 

Solid line corresponds to the mean value. 

5. Conclusion 

In this data-driven study of a large commercial mobile TV system, the watching pattern of 

viewers is studied at program level from a viewer-content perspective. Compared to 

content-unaware manner, our approach can better capture watching pattern of mobile TV. We 

find that the total watching time of programs distributed in a band linearly increasing with 

program popularity. A relative strong correlation exists between popularity and watching 

intensity of programs. The lower bound of watching intensity approaches the constant upper 

bound as the popularity of program increases. That is, there are both “unpopular but 

long-watched” and “unpopular and short-watched” programs, whereas only “popular and 

long-watched” programs exist.  

We exploited the traffic pattern on estimating watching time / traffic consumption of 

programs on mobile TV based on predictions of program popularity. A naïve program 

popularity prediction method is provided based on our data. Other audience rating prediction 
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method also can be used in our traffic estimation framework. The impact of error of program 

popularity on traffic estimation was analyzed, and the amount of extension on traffic bounds to 

achieve given estimation accuracy was discussed as well. Leave-one-out cross validation is 

used to test traffic estimation of mobile TV. It successfully forecasts the traffic range of 94% 

of programs. If the upper bound of traffic range is used to reserve traffic capacity for programs, 

the average over-provisioned traffic is lower than 15% of program traffic in popular programs 

with more than 20000 viewers. 

The total watching time of programs correspond to their network traffic volume, which is 

important in capacity allocation or choosing billing model in cloud services. The estimated 

total watching time of a video content can also be used support advertisement pricing, which is 

the important revenue source for video services. The watching intensity of programs is the per 

capita attention time of viewers spent on the program. Its characterization is useful for 

customized and balanced advertisement exposures to viewers. There are other factors that may 

affect the watching pattern, such as the mobility of user, video bit rate, which will be 

considered in the future to give more insights of mobile video streaming. High watching 

intensity of popular programs also suggests opportunities of peer-assisted system design, 

which may greatly reduce service capacity requirements. 

 

References 

[1] W. Hui, C. Lin, and Y. Yang, “MediaCloud: A New Paradigm of Multimedia Computing.,” KSII 

Transactions on Internet and Information Systems (TIIS), vol. 6,  pp. 1153–1170, 2012. 

Article (CrossRef Link) 

[2] J. Lee, J. Hwang, N. Choi, and C. Yoo, “SVC-based Adaptive Video Streaming over 

Content-Centric Networking,” KSII Transactions on Internet and Information Systems (TIIS), 

vol. 7, pp. 2430–2447, 2013. Article (CrossRef Link) 

[3] B. Stelter, “Youths are watching, but less often on TV,” The New York Times, February 8, 2012. 

http://www.nytimes.com/2012/02/09/business/media/young-people-are-watching-but-less-ofte

n-on-tv.html 

[4] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 

2013–2018,” White Paper, Feb. 2014. 

[5] T. Qiu, Z. Ge, S. Lee, J. Wang, J. Xu, and Q. Zhao, “Modeling User Activities in a Large IPTV 

System,” in Proc. of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, 

Chicago, Illinois, USA: ACM, pp. 430–441, 2009. Article (CrossRef Link) 

[6] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Modeling and generating realistic streaming 

media server workloads,” Computer Networks, vol. 51, pp. 336–356, 2007.  

Article (CrossRef Link) 

[7] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A hierarchical characterization of a 

live streaming media workload,” IEEE/ACM Transactions on Networking, vol. 14, pp. 133–146, 

Feb. 2006. Article (CrossRef Link) 

[8] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance prediction in 

peer-assisted on-demand streaming systems,” in Proc. of IEEE INFOCOM 2011, pp. 421–425, 

2011. Article (CrossRef Link) 

[9] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth auto-scaling for 

video-on-demand applications,” in Proc. of IEEE INFOCOM 2012, pp. 460–468, 2012.  

Article (CrossRef Link) 

[10] C. Wu, B. Li, and S. Zhao, “On Dynamic Server Provisioning in Multichannel P2P Live 

Streaming,” IEEE/ACM Transactions on Networking, vol. 19, pp. 1317–1330, Oct. 2011.  

Article (CrossRef Link) 

 

http://dx.doi.org/10.3837/tiis.2012.04.012
http://dx.doi.org/10.3837/tiis.2013.10.006
http://dx.doi.org/10.1145/1644893.1644945
http://dx.doi.org/10.1016/j.comnet.2006.05.003
http://dx.doi.org/10.1109/TNET.2005.863709
http://dx.doi.org/10.1109/INFCOM.2011.5935196
http://dx.doi.org/10.1109/INFCOM.2012.6195785
http://dx.doi.org/10.1109/TNET.2011.2107563


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO.9, Sep. 2015                                                 3653 

[11] K.-W. Hwang, D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, V. Misra, K.K. 

Ramakrishnan, and D.F. Swayne, “Leveraging Video Viewing Patterns for Optimal Content 

Placement,” NETWORKING 2012, R. Bestak, L. Kencl, L. Li, J. Widmer, and H. Yin, eds., 

Springer Berlin Heidelberg, pp. 44–58, 2012. Article (CrossRef Link) 

[12] Z. Liu, C. Wu, B. Li, and S. Zhao, “Why Are Peers Less Stable in Unpopular P2P Streaming 

Channels?,” NETWORKING 2009, L. Fratta, H. Schulzrinne, Y. Takahashi, and O. Spaniol, eds., 

Springer Berlin Heidelberg, pp. 274–286, 2009. Article (CrossRef Link) 

[13] C. Wu, B. Li, and S. Zhao, “Diagnosing Network-wide P2P Live Streaming Inefficiencies,” 

ACM Transactions on Multimedia Computing, Communications and Applications, vol. 8, pp. 

13:1–13:19, Feb. 2012. Article (CrossRef Link) 

[14] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “A Measurement Study of a Large-Scale P2P 

IPTV System,” IEEE Transactions on Multimedia, vol. 9, pp. 1672–1687, Dec. 2007.  

Article (CrossRef Link) 

[15] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An Analysis of Live Streaming Workloads on the 

Internet,” in Proc. of the 4th ACM SIGCOMM Conference on Internet Measurement, Taormina, 

Sicily, Italy: ACM, pp. 41–54, 2004. Article (CrossRef Link) 

[16] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain, “Watching Television over an 

IP Network,” in Proc. of the 8th ACM SIGCOMM Conference on Internet Measurement, 

Vouliagmeni, Greece: ACM, pp. 71–84, 2008. Article (CrossRef Link) 

[17] N. Liu, H. Cui, S.-H.G. Chan, Z. Chen, and Y. Zhuang, “Dissecting User Behaviors for a 

Simultaneous Live and VoD IPTV System,” ACM Transactions on Multimedia Computing, 

Communications and Applications, vol. 10, pp. 23:1–23:16, Apr. 2014. Article (CrossRef Link) 

[18] G. Yu, T. Westholm, M. Kihl, I. Sedano, A. Aurelius, C. Lagerstedt, and P. Odling, “Analysis 

and characterization of IPTV user behavior,” IEEE International Symposium on Broadband 

Multimedia Systems and Broadcasting 2009, pp. 1–6, 2009. Article (CrossRef Link) 

[19] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you tube, everybody tubes: 

analyzing the world’s largest user generated content video system,” in Proc. of the 7th ACM 

SIGCOMM conference on Internet measurement, New York, NY, USA: ACM, pp. 1–4, 2007. 

Article (CrossRef Link) 

[20] Y. Chen, B. Zhang, Y. Liu, and W. Zhu, “Measurement and Modeling of Video Watching Time 

in a Large-Scale Internet Video-on-Demand System,” IEEE Transactions on Multimedia, vol. 15, 

pp. 2087–2098, 2013. Article (CrossRef Link) 

[21] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: a view from the 

edge,” in Proc. of the 7th ACM SIGCOMM conference on Internet measurement, New York, NY, 

USA: ACM, pp. 8–15, 2007. Article (CrossRef Link) 

[22] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M.A. Kaafar, Y. Jin, and G. Peng, “Watching Videos 

from Everywhere: A Study of the PPTV Mobile VoD System,” in Proc. of the 2012 ACM 

Conference on Internet Measurement Conference, Boston, Massachusetts, USA: ACM, pp. 

185–198, 2012. Article (CrossRef Link) 

[23] H. Yu, D. Zheng, B.Y. Zhao, and W. Zheng, “Understanding user behavior in large-scale 

video-on-demand systems,” ACM SIGOPS Operating Systems Review, vol. 40, pp. 333–344, 

2006. Article (CrossRef Link) 

[24] I. Ketykó, K. De Moor, T. De Pessemier, A.J. Verdejo, K. Vanhecke, W. Joseph, L. Martens, and 

L. De Marez, “QoE Measurement of Mobile YouTube Video Streaming,” in Proc. of the 3rd 

Workshop on Mobile Video Delivery, Firenze, Italy: ACM, pp. 27–32, 2010.  

Article (CrossRef Link) 

[25] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen, “A server’s perspective of Internet streaming 

delivery to mobile devices,” in Proc. of  IEEE INFOCOM 2012, 2012, pp. 1332–1340.  

Article (CrossRef Link) 

[26] Y. Xiao, R.S. Kalyanaraman, and A. Yla-Jaaski, “Energy Consumption of Mobile YouTube: 

Quantitative Measurement and Analysis,” in Proc. of the Second International Conference on 

Next Generation Mobile Applications, Services and Technologies, pp. 61–69, 2008.  

Article (CrossRef Link) 

http://dx.doi.org/10.1007/978-3-642-30054-7_4
http://dx.doi.org/10.1007/978-3-642-01399-7_22
http://dx.doi.org/10.1145/2089085.2089090
http://dx.doi.org/10.1109/TMM.2007.907451
http://dx.doi.org/10.1145/1028788.1028795
http://dx.doi.org/10.1145/1452520.1452529
http://dx.doi.org/10.1145/2568194
http://dx.doi.org/10.1109/ISBMSB.2009.5133805
http://dx.doi.org/10.1145/1298306.1298309
http://dx.doi.org/10.1109/TMM.2013.2280123
http://dx.doi.org/10.1145/1298306.1298310
http://dx.doi.org/10.1145/2398776.2398797
http://dx.doi.org/10.1145/1218063.1217968
http://dx.doi.org/10.1145/1878022.1878030
http://dx.doi.org/10.1109/INFCOM.2012.6195496
http://dx.doi.org/10.1109/NGMAST.2008.26


3654             Li et al.: Understanding Watching Patterns of Live TV Programs on Mobile Devices: A Content Centric Perspective 

[27] Y. Li, Y. Zhang, and R. Yuan, “Measurement and Analysis of a Large Scale Commercial Mobile 

Internet TV System,” in Proc. of the 2011 ACM SIGCOMM Conference on Internet 

Measurement Conference, Berlin, Germany: ACM, pp. 209–224, 2011. Article (CrossRef Link) 

[28] Y. Jin, Y. Wen, H. Hu, and M.-J. Montpetit, “Reducing Operational Costs in Cloud Social TV: 

An Opportunity for Cloud Cloning,” IEEE Transactions on Multimedia, vol. 16, pp. 1739–1751, 

Oct. 2014. Article (CrossRef Link) 

[29] Y. Wen, X. Zhu, J.J.P.C. Rodrigues, and C.W. Chen, “Cloud Mobile Media: Reflections and 

Outlook,” IEEE Transactions on Multimedia, vol. 16, pp. 885–902, Jun. 2014.  

Article (CrossRef Link) 

[30] Amazon, “Amazon CloudFront Pricing,” URL: https://aws.amazon.com/cloudfront/pricing/. 

[31] Alibaba Group, “Ali Cloud CDN Pricing (in Chinese),” 

URL: http://help.aliyun.com/knowledge_detail.htm?knowledgeId=5975217. 

[32] E. Kaasinen, M. Kulju, T. Kivinen, and V. Oksman, “User Acceptance of Mobile TV Services,” 

in Proc. of the 11th International Conference on Human-Computer Interaction with Mobile 

Devices and Services, Bonn, Germany: ACM, pp. 34:1–34:10, 2009. Article (CrossRef Link) 

[33] P. Danaher and T. Dagger, “Using a nested logit model to forecast television ratings,” 

International Journal of Forecasting, vol. 28, pp. 607–622, 2012. Article (CrossRef Link) 

[34] P.J. Danaher, T.S. Dagger, and M.S. Smith, “Forecasting television ratings,” International 

Journal of Forecasting, vol. 27, pp. 1215–1240, 2011.Article (CrossRef Link) 

[35] Y.-H. Cheng, C.-M. Wu, T. Ku, and G.-D. Chen, “A Predicting Model of TV Audience Rating 

Based on the Facebook,” Social Computing (SocialCom), 2013 International Conference on, pp. 

1034–1037, 2013. Article (CrossRef Link) 

[36] Y.-Y. Huang, Y.-A. Yen, T.-W. Ku, S.-D. Lin, W.-T. Hsieh, and T. Ku, “A Weight-Sharing 

Gaussian Process Model Using Web-Based Information for Audience Rating Prediction,” 

Technologies and Applications of Artificial Intelligence, S.-M. Cheng and M.-Y. Day, eds., 

Springer International Publishing, pp. 198–208, 2014. Article (CrossRef Link) 

 

 
 

Yuheng Li received his B.E. degree in automatic control in 2007 from Tsinghua 

University, Beijing, China. He is currently a Ph.D candidate of the Center for 

Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua 

University. His research interests include measurement and modeling of online 

multimedia systems. 

 

Qianchuan Zhao received the B.E. degree in automatic control, the B.S. degree in 

applied mathematics, and the M.S. and Ph.D. degrees in control theory and its 

applications from Tsinghua University, Beijing, China, in 1992 and 1996, respectively. 

He is currently a Professor and Associate Director of the Center for Intelligent and 

Networked Systems (CFINS), Department of Automation, Tsinghua University. He 

was a Visiting Scholar at Carnegie Mellon University, Pittsburgh, PA, and Harvard 

University, Cambridge, MA, in 2000 and 2002, respectively. He was a Visiting 

Professor at Cornell University, Ithaca, NY, in 2006. He has published more than 80 

research papers in peer-reviewed journals and conferences. His current research 

focuses on modeling, control and optimization of complex networked systems with 

applications in smart buildings, smart grid and manufacturing automation. Dr. Zhao 

received the China National Nature Science Award for the project “Optimization 

Theory and Optimization for Discrete Event Dynamic System” in 2009. He is an 

Associate Editor for Journal of Optimization Theory and Applications, was an 

Associate Editor for IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND 

ENGINEERING and is an Associate Editor for IEEE TRANSACTIONS ON 

CONTROL OF NETWORK SYSTEMS. He serves as a Chair of the Technical 

Committee on Smart Buildings of IEEE RAS. 

 

http://dx.doi.org/10.1145/2068816.2068837
http://dx.doi.org/10.1109/TMM.2014.2329370
http://dx.doi.org/10.1109/TMM.2014.2315596
http://dx.doi.org/10.1145/1613858.1613902
http://dx.doi.org/10.1016/j.ijforecast.2012.02.008
http://dx.doi.org/10.1016/j.ijforecast.2010.08.002
http://dx.doi.org/10.1109/socialcom.2013.167
http://dx.doi.org/10.1007/978-3-319-13987-6_19

