• Title/Summary/Keyword: Automation Software

Search Result 541, Processing Time 0.036 seconds

Automatic Detection of Usability Issues on Mobile Applications (모바일 앱에서의 사용자 행동 모델 기반 GUI 사용성 저해요소 검출 기법)

  • Ma, Kyeong Wook;Park, Sooyong;Park, Soojin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.319-326
    • /
    • 2016
  • Given the attributes of mobile apps that shorten the time to make purchase decisions while enabling easy purchase cancellations, usability can be regarded to be a highly prioritized quality attribute among the diverse quality attributes that must be provided by mobile apps. With that backdrop, mobile app developers have been making great effort to minimize usability hampering elements that degrade the merchantability of apps in many ways. Most elements that hamper the convenience in use of mobile apps stem from those potential errors that occur when GUIs are designed. In our previous study, we have proposed a technique to analyze the usability of mobile apps using user behavior logs. We proposes a technique to detect usability hampering elements lying dormant in mobile apps' GUI models by expressing user behavior logs with finite state models, combining user behavior models extracted from multiple users, and comparing the combined user behavior model with the expected behavior model on which the designer's intention is reflected. In addition, to reduce the burden of the repeated test operations that have been conducted by existing developers to detect usability errors, the present paper also proposes a mobile usability error detection automation tool that enables automatic application of the proposed technique. The utility of the proposed technique and tool is being discussed through comparison between the GUI issue reports presented by actual open source app developers and the symptoms detected by the proposed technique.

Implementation of User-friendly Intelligent Space for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 사용자 친화적 지능형 공간 구현)

  • Choi, Jong-Moo;Baek, Chang-Woo;Koo, Ja-Kyoung;Choi, Yong-Suk;Cho, Seong-Je
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.443-452
    • /
    • 2004
  • The paper presents an intelligent space management system for ubiquitous computing. The system is basically a home/office automation system that could control light, electronic key, and home appliances such as TV and audio. On top of these basic capabilities, there are four elegant features in the system. First, we can access the system using either a cellular Phone or using a browser on the PC connected to the Internet, so that we control the system at any time and any place. Second, to provide more human-oriented interface, we integrate voice recognition functionalities into the system. Third, the system supports not only reactive services but also proactive services, based on the regularities of user behavior. Finally, by exploiting embedded technologies, the system could be run on the hardware that has less-processing power and storage. We have implemented the system on the embedded board consisting of StrongARM CPU with 205MHz, 32MB SDRAM, 16MB NOR-type flash memory, and Relay box. Under these hardware platforms, software components such as embedded Linux, HTK voice recognition tools, GoAhead Web Server, and GPIO driver are cooperated to support user-friendly intelligent space.

Implementation and Validation of EtherCAT Support in Integrated Development Environment for Synchronized Motion Control Application (동기 모션 제어 응용을 위한 통합개발환경의 EtherCAT 지원 기능 구현 및 검증)

  • Lee, Jongbo;Kim, Chaerin;Kim, Ikhwan;Kim, Youngdong;Kim, Taehyoun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • Recently, software-based programmable logic controller (PLC) systems, which are implemented in standard PLC languages on general hardware, are gaining popularity because they overcome the limitations of classical hardware PLC systems. Another noticeable trend is that the use of integrated development environment (IDE) is becoming important. IDEs can help developers to easily manage the growing complexity of modern control systems. Furthermore, industrial Ethernet, e.g. EtherCAT, is becoming widely accepted as a replacement for conventional fieldbuses in the distributed control domain because it offers favorable features such as short transmission delay, high bandwidth, and low cost. In this paper, we implemented the extension of open source IDE, called Beremiz, for developing EtherCAT-based real-time, synchronized motion control applications. We validated the EtherCAT system management features and the real-time responsiveness of the control function by using commercial EtherCAT drives and evaluation boards.

Development of Robotic System based on RFID Scanning for Efficient Inventory Management of Thick Plates (효율적인 후판 재고관리를 위한 RFID 스캐닝 로봇 시스템 개발)

  • Lee, Kwang-Hyoung;Min, So-Yeon;Lee, Jong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.1-8
    • /
    • 2016
  • Automation of inventory management in a steel plate factory was a difficult problem unresolved for a long time. And now, it is also necessary to work diligently in the steel industry on efficient inventory management of thick plates. So far, the environmental characteristics of stacked thick plates means it is not easy to apply advanced technology for their automatic identification. In this paper, we propose a thick-plate robotic scanning system based on radio-frequency identification (RFID) that can provide quick and accurate inventory management by acquiring plate information after the scanning automatically recognizes the RFID tags under difficult load conditions. This system is equipped with a crane to move the plates in a pulled-up operation. It is equipped with a plate-only linear dipole antenna only for scanning the position of the plate tag. Only the linear dipole antenna, while moving the x-axis and y-axis information, automatically identifies the tag information attached to the plate. The tag information acquired by the system is used for stockpiling and is managed by steel plate inventory control software. The effectiveness of the proposed system is verified through field performance evaluation. As a result, the recognition rate of the plate tags is 99.9% at a maximum distance of 320 cm. The developed thick-plate antenna showed excellent performance compared to an existing commercial antenna.

A Study on the Estimation of Multi-Object Social Distancing Using Stereo Vision and AlphaPose (Stereo Vision과 AlphaPose를 이용한 다중 객체 거리 추정 방법에 관한 연구)

  • Lee, Ju-Min;Bae, Hyeon-Jae;Jang, Gyu-Jin;Kim, Jin-Pyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.279-286
    • /
    • 2021
  • Recently, We are carrying out a policy of physical distancing of at least 1m from each other to prevent the spreading of COVID-19 disease in public places. In this paper, we propose a method for measuring distances between people in real time and an automation system that recognizes objects that are within 1 meter of each other from stereo images acquired by drones or CCTVs according to the estimated distance. A problem with existing methods used to estimate distances between multiple objects is that they do not obtain three-dimensional information of objects using only one CCTV. his is because three-dimensional information is necessary to measure distances between people when they are right next to each other or overlap in two dimensional image. Furthermore, they use only the Bounding Box information to obtain the exact coordinates of human existence. Therefore, in this paper, to obtain the exact two-dimensional coordinate value in which a person exists, we extract a person's key point to detect the location, convert it to a three-dimensional coordinate value using Stereo Vision and Camera Calibration, and estimate the Euclidean distance between people. As a result of performing an experiment for estimating the accuracy of 3D coordinates and the distance between objects (persons), the average error within 0.098m was shown in the estimation of the distance between multiple people within 1m.

A Study on the Comparison of Learning Performance in Capsule Endoscopy by Generating of PSR-Weigted Image (폴립 가중치 영상 생성을 통한 캡슐내시경 영상의 학습 성능 비교 연구)

  • Lim, Changnam;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.251-256
    • /
    • 2019
  • A capsule endoscopy is a medical device that can capture an entire digestive organ from the esophagus to the anus at one time. It produces a vast amount of images consisted of about 8~12 hours in length and more than 50,000 frames on a single examination. However, since the analysis of endoscopic images is performed manually by a medical imaging specialist, the automation requirements of the analysis are increasing to assist diagnosis of the disease in the image. Among them, this study focused on automatic detection of polyp images. A polyp is a protruding lesion that can be found in the gastrointestinal tract. In this paper, we propose a weighted-image generation method to enhance the polyp image learning by multi-scale analysis. It is a way to extract the suspicious region of the polyp through the multi-scale analysis and combine it with the original image to generate a weighted image, that can enhance the polyp image learning. We experimented with SVM and RF which is one of the machine learning methods for 452 pieces of collected data. The F1-score of detecting the polyp with only original images was 89.3%, but when combined with the weighted images generated by the proposed method, the F1-score was improved to about 93.1%.

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

A Resource Management Scheme Based on Live Migrations for Mobility Support in Edge-Based Fog Computing Environments (에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법)

  • Lim, JongBeom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.163-168
    • /
    • 2022
  • As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.

UX Design of Mobile Banking Usage Improvement for Seniors (시니어들을 위한 모바일 뱅킹 이용률 개선을 위한 UX 디자인)

  • Jongbin Lee;Homin Boun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.325-332
    • /
    • 2023
  • Currently, the world's population has already entered a super-aging era, and the rate is expected to increase rapidly to about 40% by 2050. However, the rapid development of automation technology and the online service sector, the main technologies of the Fourth Industrial Revolution, are still further isolating them in a world where many inconveniences and development technologies are applied. As such, alienation in daily life is widely expanded in various fields, but the financial service sector is one of the must-use areas regardless of age because of its strong nature in the public service sector, and is a very important factor in the period when branches are rapidly decreasing. However, the current utilization rate of mobile banking services is not around 5%, so users over 60 are rarely able to use them. The UX design of the most frequently used remittance service screen in mobile banking services was proposed, and the difficulty of trying to find the preferred bank among 56 or more banks was solved by analyzing the usage rate of each bank and dividing it into three stages by age group from 50 or older. In addition, it was designed to strengthen customized services by showing their recently used banks as the top priority. The design proposed in this study obtained an average of 4.8 points or more out of 5 points as a result of usability satisfaction through interviews with less than 50 senior groups. This study is believed to help each bank upgrade its different mobile banking designs in a unified manner.

Prediction accuracy of incisal points in determining occlusal plane of digital complete dentures

  • Kenta Kashiwazaki;Yuriko Komagamine;Sahaprom Namano;Ji-Man Park;Maiko Iwaki;Shunsuke Minakuchi;Manabu, Kanazawa
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.6
    • /
    • pp.281-289
    • /
    • 2023
  • PURPOSE. This study aimed to predict the positional coordinates of incisor points from the scan data of conventional complete dentures and verify their accuracy. MATERIALS AND METHODS. The standard triangulated language (STL) data of the scanned 100 pairs of complete upper and lower dentures were imported into the computer-aided design software from which the position coordinates of the points corresponding to each landmark of the jaw were obtained. The x, y, and z coordinates of the incisor point (XP, YP, and ZP) were obtained from the maxillary and mandibular landmark coordinates using regression or calculation formulas, and the accuracy was verified to determine the deviation between the measured and predicted coordinate values. YP was obtained in two ways using the hamularincisive-papilla plane (HIP) and facial measurements. Multiple regression analysis was used to predict ZP. The root mean squared error (RMSE) values were used to verify the accuracy of the XP and YP. The RMSE value was obtained after crossvalidation using the remaining 30 cases of denture STL data to verify the accuracy of ZP. RESULTS. The RMSE was 2.22 for predicting XP. When predicting YP, the RMSE of the method using the HIP plane and facial measurements was 3.18 and 0.73, respectively. Cross-validation revealed the RMSE to be 1.53. CONCLUSION. YP and ZP could be predicted from anatomical landmarks of the maxillary and mandibular edentulous jaw, suggesting that YP could be predicted with better accuracy with the addition of the position of the lower border of the upper lip.