• Title/Summary/Keyword: Automatic mooring system

Search Result 19, Processing Time 0.027 seconds

A Study on the Design and Structure Optimization of an Automatic Mooring System for a 6000 ton Class Autonomous Ship (6000톤급 자율운항선박을 위한 자동계류장치 설계 및 구조 최적화에 대한 연구)

  • Kim, Namgeon;Shin, Haneul;Kim, Teagyun;Park, Jihyuk
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • This paper presents the design for the kinematic structure of a system for an automatically moored 6000 ton autonomous ship in a port, and the process and results of optimal design for the link cross-sectional shape. We propose an automatic mooring system with a PPP type serial manipulator structure capable of linear motion in the XYZ axis. The mooring force applied by the mooring system was derived with dynamics simulation tool "ADAMS". The design goal is the minimization of the cross-sectional area of the link. Constrains include compressive stress and shear stress. The optimization problems were solved by using the sequential quadratic programing method implemented in the fmincon package. The shape of the cross section was assumed to be rectangle. Through future research, we plan to manufacture automatic mooring system for 6000ton class autonomous ship.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

Stability Analysis of Mooring Lines of a Submersible Fish Cage System Using Numerical Model

  • Kim, Tae-Ho;Hwang, Kyu-Serk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.690-699
    • /
    • 2011
  • A numerical model analysis was performed to analyze the stability of the mooring lines of an automatic submersible fish cage system in waves and currents. The fish cage system consisted of a 12-angled rigid frame, net cage, cover net, 12 upper floats, 12 tanks(for fixed and variable ballast), mooring lines, anchors, and a control station. Simulations were performed with the cage at the surface of the water and at a depth of 20 m. A Morison equation type model was used for simulations of the system in two configurations. The force parameters described both regular and random waves, with and without currents, and their values were input to the model. Mooring tension calculations were conducted on the mooring lines, grid lines and lower bridle lines of the cage. The stability of the mooring lines was checked under both static and dynamic conditions.

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

A Study on the Estimation of Mooring Force of the T/S HANBADA (실습선 한바다호의 계류력 추정연구)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.819-826
    • /
    • 2022
  • Recently, interest in smart port systems for linking with autonomous ships is increasing. To build a smart port system, primarily, a system that can automatically moor a vessel is required. To calculate the allowable mooring capacity of the automatic mooring system in a port, the characteristics of the vessel must be considered, and the external force generated from environmental disturbances in the sea must be accurately calculated. Accurately estimating the magnitude of these environmental disturbances is an extremely important factor for designing an automatic mooring system. In this study, the mooring capacity of the HANBADA was estimated according to the port and fishing port design criteria of the Ministry of Ocean and Fisheries. The longitudinal and lateral forces of the mooring force acting on the HANBADA were 18 kN and 248 kN, respectively, under the most extreme ocean conditions (BF 6).

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Design of a Displacement and Velocity Measurement System Based on Environmental Characteristic Analysis of Laser Sensors for Automatic Mooring Devices (레이저 센서의 환경적 특성 분석에 기반한 선박 자동계류장치용 변위 및 속도 측정시스템 설계)

  • Jin-Man Kim;Heon-Hui Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.980-991
    • /
    • 2023
  • To prevent accidents near the quay caused by a ship, ports are generally designed and constructed through navigation and berthing safety assessment. However, unpredictable accidents such as ship collisions with the quay or personal accidents caused by ropes still occur sometimes during the ship berthing or mooring process. Automatic mooring systems, which are equipped with an attachment mechanism composed of robotic manipulators and vacuum pads, are designed for rapid and safe mooring of ships. This paper deals with a displacement and velocity measurement system for the automatic mooring device, which is essential for the position and speed control of the vacuum pads. To design a suitable system for an automatic mooring device, we first analyze the sensor's performance and outdoor environmental characteristics. Based on the analysis results, we describe the configuration and design methods of a displacement and velocity measurement system for application in outdoor environments. Additionally, several algorithms for detecting the sensor's state and estimating a ship's velocity are developed. The proposed method is verified through some experiments for displacement and speed measurement targeted at a moving object with constant speed.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

An Aquaculture System Concept for Ocean Application (해양양식전진기지 개념설계)

  • Go, Yu-Bong;Choi, Young-Chan;Kim, Seoung-Gun;Park, Ro-Sik;Lee, Sang-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.79-82
    • /
    • 2003
  • An aquaculture system for feeding the caged fishes in the open water is suggested for ocean application. Survival and operation conditions are defined at the conceptual design. Wave and current drag forces are discussed to determine the proper dimension of the aquaculture system and the related mooring system. Second order wave drift force at the survival condition is the dominant force, which be reduced by minimizing the superstructure open to the surface. Automation in feeding, sorting, cleaning is introduced to use the ongoing technology for quality product. The suggested system has advantage compared to onshore culturing, but not to shallow water culturing system. There is room for real application in future by the countries, such as Korea and Japan, which are in short of fish supply and have willingness to venture towards the ocean aquaculture.

  • PDF

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.