• Title/Summary/Keyword: Automatic design

Search Result 2,646, Processing Time 0.032 seconds

Automatic Pipeline Welding System with Self-Diagnostic Function and Laser Vision Sensor

  • Kim, Yong-Baek;Moon, Hyeong-Soon;Kim, Jong-Cheol;Kim, Jong-Jun;Choo, Jeong-Bog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1137-1140
    • /
    • 2005
  • Automatic welding has been used frequently on pipeline projects. The productivity and reliability are most essential features of the automatic welding system. The mechanized GMAW process is the most widely used welding process and the carriage and band system is most effective welding system for pipeline laying. This application-oriented paper introduces new automatic welding equipment for pipeline construction. It is based on cutting-edge design and practical welding physics to minimize downtime. This paper also describes the control system which was designed and implemented for new automatic welding equipment. The system has the self diagnostic function which facilitates maintenance and repairs, and also has the network function via which the welding task data can be transmitted and the welding process data can be monitored. The laser vision sensor was designed for narrow welding groove in order to implement higher accuracy of seam tracking and fully automatic operation.

  • PDF

A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1))

  • Park, Hoo-Myung;Kang, Jin-Kab;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

Developing Automatic Lens Module Assembly System Using 3D Simulation (3D 시뮬레이션을 활용한 렌즈모듈 자동화조립시스템 개발)

  • Moon, Dug-Hee;Lee, Jun-Seok;Baek, Seung-Geun;Zhang, Bing-Lin;Kim, Yeong-Gyoo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.65-74
    • /
    • 2007
  • Virtual manufacturing (VM) is a powerful technology for developing a new product, new equipment and new manufacturing system, and three-dimensional (3D) simulation is a core technology in VM. 3D simulation involves both mechanical simulation and discrete event simulation. This paper introduces a case study of implementing 3D simulation for developing an automatic assembly line in a Korean optical factory. This factory produces a lens module that is the part of a phone-camera. 3D simulation technology is applied from the early stage of development. In the conceptual design and the initial design phases for individual equipment, 3D mechanical simulation using $CATIA^{(R)}$ and $IGRIP^{(R)}$ is conducted. 3D discrete event simulation with $QUEST^{(R)}$ is applied to the detailed design of the equipment and of the whole system. The focus of the simulation is to verify the technical and economical feasibility of the new automatic system. As a result, the takt time is reduced to the quarter of the manual system, and the number of workers in a line is reduced tremendously.

  • PDF

Techniques of Automatic Finite Element Mesh Generation on Surface Primitives (원시곡면 위의 유한요소망 자동생성 기법)

  • 이재영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.189-202
    • /
    • 1996
  • Complex geometric shapes can be defined simply and efficiently by combining and operating various surface primitives. These primitives and their intersection curves are used in finite element mesh generation to form an easy and intuitive procedure for finite element modelling of curved surfaces. This paper proposes techniques of automatic mesh generation on surface primitives with arbitrarily shaped boundaries and control curves, which may be created by surface to surface intersection. A method of automatic mesh generation on plane, which was previously developed by the author, has been modified for application to the surface mesh generation. Owing to the mesh generation-wise differences between planes and surfaces, the surfaces should be transformed into conceptual plane so that the modified plane mesh generation method can be applied. Surface development, mapping and mesh reconstruction are the key techniques suggested in this paper. The selection of the technique to apply can be determined automatically on the basis of the developability, existence of singularity and other characteristics of the surfaces on which the mesh is to be generated. The suggested techniques were implemented into parts of mesh generation functions of the finite element software, MacTran. Their validity and practicality were manifested by the actual use of this software.

  • PDF

A design of automatic trading system by dynamic symbol using global variables (전역 변수를 이용한 유동 심볼 자동 주문 시스템의 설계)

  • Ko, Young Hoon;Kim, Yoon Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.211-219
    • /
    • 2010
  • This paper designs the dynamic symbol automatic trading system in Korean option market. This system is based on Multichart program which is convenient and efficient system trading tool. But the Multichart has an important restriction which has only one constant symbol per chart. This restriction causes very useful strategies impossible. The proposed design uses global variables, signal chart selection and position order exchange. So an automatic trading system with dynamic symbol works on Multichart program. To verify the proposed system, BS(Buythensell)-SB(Sellthenbuy) strategies are tested which uses the change of open-interest of stock index futures within a day. These strategies buy both call and put option in ATM at start candle and liquidate all at 12 o'clock and then sell both call and put option in ATM at 12 o'clock and also liquidate all at 14:40. From 23 March 2009 to 31 May 2010, 301-trading days, is adopted for experiment. As a result, the average daily profit rate of this simple strategies riches 1.09%. This profit rate is up to eight times of commision price which is 0.15 % per option trade. If the method which raises the profitable rate of wining trade or lower commission than 0.15% is found, these strategies make fascinated lossless trading system which is based on the proposed dynamic symbol automatic trading system.

Controller Design for Automatic Evacuation Disposal System with Multi-sensors (다중센서를 적용한 자동배변처리기용 제어기 설계)

  • Moon, I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • This paper proposes a design of controller for automatic evacuation disposal system with suction, collecting, washing, and drying functions to be useful for excretion care of long-term bedridden patients. It is desirable that the system can discriminate excreta such as feces and urine severally, and dispose of them without having additional efforts of caregivers. This paper describes a method to improve the discrimination ability by using multi-sensors, and proposes disposal processes according to the type of excrements. As a result the automatic evacuation disposal system can perform an efficient operation in the excrement care. Experimental results using artificial excrements show the automatic evacuation disposal system is effective and feasible to assist the excrement care.

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

Dynamic characteristic identification of PWM solenoid valve for automatic transmission (자동변속기용 펄스폭변조 솔레노이드 밸브의 동특성 식별)

  • Jung, Gyu-Hong;Cho, Baek-Hyun;Lee, Kyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1636-1647
    • /
    • 1997
  • As most of today's automatic transmissions in passenger car adopt a electro-hydraulic control system, the role of electronically controlled solenoid valves occupies an important position and it is essential to predict solenoid transient characteristics in order to design and evaluate the performance of the hydraulic control system. However, in general, both the magnetic and electrical parameters f the solenoid system are hardly known and it is not easy to model this section with moderate complexity although mechanical system could be developed using the classical second order system. This paper presents a dynamic modelling technique of a solenoid valve, that is controlled by pulse width modulation for an automatic transmission, in terms of system identification theory. In nonlinear computer simulation, it is shown that the identified systems which produce magnetic force to input duty cycle for various excitation signals predict the static and dynamic performance very well near the operating point and in experiment conducted to confirm the validity of identification theory for PWM solenoid valve, we find that there is a good agreement between the experimental data and simulation result. Hence, this model can be utilized in the development of pressure control system with PWM solenoid valve.

A Supervisor-Based Neural-Adaptive Shift Controller for Automatic Transmissions Considering Throttle Opening and Driving Load

  • Shin, Byung-Kwan;Hahn, Jin-Oh;Yi, Kyong-Su;Lee, Kyo-II
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.418-425
    • /
    • 2000
  • Recently, many passenger cars have adopted automatic transmissions for shifting gears, and thus the smooth and precise control of gear shifts of passenger car automatic transmissions has become more and more essential for the riding comfort of vehicles equipped with automatic transmissions. In this article, a neural network-based supervisor for an automotive shift controller considering the throttle opening, variations in throttle opening, and the driving load is presented. For using the driving load information, an observer-based driving load estimation algorithm is proposed. A proportional-integral-derivative controller along with an open loop controller is used as a low level controller for controlling the gear shifts, and a supervisory controller for properly adapting the shift control parameters of the low level shift controller is designed using ANFIS. To evaluate the control performance of the proposed supervisor-based shift controller, both simulation studies and experimental studies are performed for various shifting situations.

  • PDF

Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module (금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정)

  • Lee, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.