• Title/Summary/Keyword: Automated unloading system

Search Result 27, Processing Time 0.024 seconds

Automatic Landing System of Container Spreader (컨테이너 스프레더의 자동 랜딩 시스템)

  • 박경택;박찬훈;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1688-1692
    • /
    • 2003
  • The automatic Landing system is used for the automatic functions of automatic transfer crane in the automated container terminal. It confirms and adjusts the alignment and pose between spreader and container and accomplishes the automatic loading/unloading job of containers in yard. Specially, it is required in the automated container terminal and is well adapted under the coarse external environments. This system used the laser sensors to recognize the alignment between spreader and container. In this paper the algorithm of recognition of the alignment and pose is presented and the result of its simulation is shown.

  • PDF

Technical Survey of Eco-Green port (친환경 그린포트의 기술동향)

  • Kim, Kyung-Han;Park, Kyoung-Taik;Kim, Doo-Hyung;Cho, Gyu-Baeke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.167-168
    • /
    • 2010
  • Advanced countries are adopted the Eco-Green port using high energy efficiency Crane and Automated unloading system. This paper includes the case study for energy saving ECO-RTG and other automated unloading system such as, German CTA, Japan OHI, and so on.

  • PDF

An Automated System for Constant ${\Delta}K_{eff}$ Fatigue Crack Growth Testing through Real-time Measurement of Crack Opening Load (${\Delta}K_{eff}$ 제어 피로 균열 진전 시험 자동화 시스템에 관한 연구)

  • Shin, Sung-Chul;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.447-452
    • /
    • 2001
  • An automated system is developed to perform fatigue crack growth tests under constant effective stress intensity factor range ${\Delta}K_{eff}$. In the system, crack length and crack opening load are measured in real-time by using the unloading elastic compliance method. The system consists of two personal computers, an analogue electrical subtraction circuit, a stepping motor, a stepping motor driver, a PIO board, and the application software used to integrate the whole system. The performance of the developed system was tested and discussed performing constant ${\Delta}K_{eff}$ crack growth tests on a CT specimen of 7075-T6 aluminum alloy. The performance of the system is found to be strongly dependent on the accuracy of measurements of crack opening load. Besides constant ${\Delta}K_{eff}$ testing, the system is expected to be successfully applied for automation of various fatigue tests.

  • PDF

On optimal cyclic scheduling for a flexible manufacturing cell

  • Kise, Hiroshi;Nakamura, Shinji;Karuno, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1250-1255
    • /
    • 1990
  • This paper discusses an optimal cyclic scheduling problem for a FMC (Flexible Manufacturing Cell) modeled by a two-machine flowshop with two machining centers with APC's (Automated Pallet Changers), an AGV (Automated Guided Vehicle) and loading and unloading stations. Cyclic production in which similar patterns of production is repeated can significantly reduce the production lead-time and WIP (Work-In-Process) in such flexible, automated system. Thus we want to find an optimal cyclic schedule that minimizes the cycle time in each cycle. However, the existence of APC's as buffer storage for WIP makes the problem intractable (i.e., NP-complete). We propose an practical approximation algorithm that minimizes, instead of each cycle time, its upper bound. Performances of this algorithm are validated by the way of computer simulations.

  • PDF

Improvement of LMCTS Position Accuracy using DR-FNN Controller

  • Lee, Jin Woo;Suh, Jin Ho;Lee, Young Jin;Lee, Kwon Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.223-230
    • /
    • 2004
  • In this paper, we will introduce a control strategy based on the permanent magnet linear synchronous motor (PMLSM) container transfer system using soft-computing algorithm. Linear motor-based container transport system (LMCTS) is horizontal transfer system for the yard automation, which has been proposed to take the place of automated guided vehicle in the maritime container terminal. LMCTS is considered as that the system is changed its model suddenly and variously by loading and unloading container. The proposed control system is consisted of two DR-FNNs that act the role of controller and system emulator. Consequently, the system had the predictable structure and an ability to adapt for a huge variation of rolling friction, detent force, and sudden changes of its weight by loading and unloading.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.

Collision Avoidance Algorithms of Multiple AGV Running on the Fixed Runway Considering Running and Working Time (다중 AGV의 이동시간과 작업시간을 고려한 고정 경로에서 충돌 회피 알고리즘)

  • Ryu, Gang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1327-1332
    • /
    • 2018
  • An AGV(Automated Guided Vehicle) where is running on production automated system is related efficiency of production system similarly. On previous study proposed a path collision avoidance algorithms using shortest path of AGV. Running time about loading and unloading with shortest path of AGV is important factor to decide the production system efficiency. In this paper, we propose a method of shortest path and shortest time. Also propose the decision making method of collision avoidance position for setup a shortest runway for next command. To do verify the proposed method consist a simulation for AGV. Finally, we compare and analyse the proposed system between the existing system and show that our system can effectively the performance.

Cycle Time Evaluation of Automated Storage and Retrieval System for Heavy Loads (중량물 적재를 위한 자동창고의 주기시간 평가)

  • Kim, Chang-Hyun
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this paper, a model is presented to estimate a cycle time for completing an operation in a new type of AS/RS which can handle very heavy loads by separating the mechnisms for vertical and horizontal movements. Considering loading/unloading time between devices, we generalize the previous work, Hu et al. [9], which neglected the transfer time. Through the numerical experiments for various situations, we find that the difference of the cycle times between two models is fairly large and conclude that the transfer time between devices cannot be neglected at all.

A study on the measurement method of raw laver weight using load cell (로드셀을 이용한 생김 중량측정 방법에 관한 연구)

  • Eun-Bi MIN;Tae-Jong KANG;Eun-A YOON;Ok-Sam KIM;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • This study developed and evaluated a load cell-based automatic weighing system for the automated harvesting of laver (Porphyra tenera) in seaweed aquaculture. The current manual harvesting process was compared with the load cell-based automated system, and quantitative measurements of time, distance, and weight were conducted. The results demonstrated that the load cell-based system reduced the unloading time and increased the throughput compared to the manual method. In addition, statistical analysis confirmed that there was no significant difference from the mean in the weight measurement obtained using the load cell-based system. Based on these findings, the load cell-based automatic weighing system holds potential for efficient production and transactions in laver cultivation, contributing to cost reduction and improving the quality of life for aquaculture workers.

Determination of the Pallet Quantity Using Simulation in the FMS for Aircraft Parts (시뮬레이션 기법을 이용한 항공기 부품 가공 유연생산시스템의 팔레트 수량 결정)

  • Kim, Deok Hyun;Lee, In Su;Cha, Chun Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.59-69
    • /
    • 2018
  • This study deals with the case study on the pallet quantity determination problem for the flexible manufacturing system producing 32 different types of aircraft wing ribs which are major structures of an aircraft wings. A Korean company has constructed the WFMS (wing rib flexible manufacturing system) that is composed of several automated equipments such as the 5-axis machining centers, the RGV (rail guided vehicles)s, the AS/RS (automated storage and retrieval system), the loading/unloading stations, and so on. Pallets play a critical role in the WFMS to maintain high system utilization and continuous work flow between 5-axis machining machines and automated material handling devices. The discrete event simulation method is used to evaluate the performance of the WFMS under various pallet mix alternatives for wing rib manufacturing processes. Four performance measures including system utilization, throughput, lead-time and work in process inventory level are investigated to determine the best pallet mix alternative. The best pallet mix identified by the simulation study is adopted in setting up and operating a real Korean aircraft parts manufacturing shop. By comparing the real WFMS's performances with those of the simulation study, we discussed the cause of performance difference observed and the necessity of developing the CPS (cyber physical system).