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ABSTRACT
This paper discusses an optimal cyclic
scheduling problem for a FMC (Flexible

Manufacturing Cell) modeled by a two-machine
flowshop with two machining centers with APC's
(Automated Pallet Changers), an AGV (Automated
Guided Vehicle) and loading and unloading
stations. Cyclic production in which similar
patterns of production is repeated can
significantly reduce the production 1lead-time
and WIP (Work-In-Process) 1in such flexible,
automated system. Thus we want to find an
optimal cyclic schedule that minimizes the cycle
time in each cycle. However, the existence of
APC's as buffer storage for WIP makes the
problem intractable {i.e., NP-complete). We
propose an practical approximation algorithm
that minimizes, instead of each cycle time, its
upper bound. Performances of this algorithm are
validated by the way of computer simulations.

1. INTRODUCTION

This paper considers a FMC (Flexible
Manufacturing Cell) that consists of two
machines such as machining centers with ATC
(Automated Tool Changer), an AGV (Automated
Guided Vehicle) and 1loading and unloading
stations, all of which are controlled by
computers. Each machine has an APC (Automated
Pallet Changer) by which two jobs from and to
that machine can simultaneously exchanged. The
AGV can carry at most one job at a time.
L.oading and unloading stations that may
constitute a part of an automated warchouse have
enough capacity of storage for unfinished and
finished jobs, respectively. Each job is picked
up at the loading station, processed on two
machines in the same order, and deposited in the
unloading station.

Wassenhove et al [8] have surveyed over half
the FMS's operating worldwide in 1983, and
reported that there is a definite trend towards
more integrated independent cells 1like the
system discussed here. (Also see Yamazaki and
Nagae [9]) which shows a FMC quite similar to our
model.) We consider our FMC as a part of a
flexible production system that consists of
manufacturing and assembling shops. The
manufacturing shop consisting of disconnected
FMC's are advantageocus over large, complex
FMS's, since the former can more easily be
controlled and maintained from both hardware and
software points of view. Thus even if many
processing stages are required, the system can
advantageously be disaggregated into disconnected
FMC's (by subcontracting bottleneck processing,
as discussed by Ravikumar and Vannelli [7]).

By cyclic production we mean here that
similar patterns of production are repeated.
Each cycle may have a different set of parts to
be assembled into a product. This definition is
more flexible than the conventional cyclic
production in which the exact same pattern of
production 1is repeated (e.g. see Graves et al
[2] and Matsuo [5]). The automation of material
handling as assumed here can drastically reduce
set-up times for switching jobs. Thesc
reductions allow the system to process a varicty
of jobs without reducing the efficiency
seriously. Then the cyclic production can
significantly reduce the production lead-time
and WIP(Work-In-process) in the entire
production system as compared with commonly used
batch production, if manufacturing and
assembling are synchronized or adopt the JIT
(Just-In-Time) system.

This paper discusses a scheduling problem of
minimizing cycle time of each cycle in the above
FMC. Kise et al [4] have shown that the problea
can be solved in a polynomial time, if no WIP
(i.e., no APC) is allowed in thc FMC. However,
the existence of APC's as buffer for WIP makes
the problem intractable (i.e., NP-complicte),
even if transportation times of the AGV are
neglected, and there is only one cycle (i.e., a
classical makespan problem for a two-machine
flowshop with finite buffer,[6]). Thus practical
approximation algorithms should be developed. We
propose an approximation algorithm which is
based on the Gilmore and Gomory's algorithm [1]
for a special traveling salesman problem, and
minimizes, instead of each cycle time, its upper
bound. Performances of this algorithm are
validated by the way of computer simulations.

2. Description of the Systcm

As schematically shown in Fig. 1, the
system discussed here consists of two machines
Ma and My, an AGV and a loading station Sl and
an unloading stations Su' Each machine have a
single unit of APC by which a job to be
transferred to the machine can be exchanged for
a job awaliting transportation from that machine.
It processes at most one job at a time. No
pre-emption is allowed. The AGV sends at most
one job at a time. Loading and unloading
stations, Sl and Su, have enough capacity of
buffer storage for unfinished and finished jobs,
respectively. Each job is processed on each
machine exactly once in the same order. There
are m cycles of the production to be processed
by this system. The s-th cycle consists of ng
jobs for s=1,2,..,m.

Let j%(k) be the k-th job to be processed
in the s-th cycle, the the system behaves as
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Fig.1l A Schematic of a FMC

follows, where
38-k)=3%"Mng_y k), k=0,1,2, s=2,3,...,m.(1)
is assumed for notational convenience.

Step 1.

(1) The AGV picks up jl(l), the 1st job in the
Ist cycle, at loading station Sl at time 0,
and sends it to machini M,.

(2) M, starts processing j (l?. while the empty
Agv goes back to Sy and sends the secon? job
j={2) to M, where it is exchanged for j~(1)
after it is finished on M.

(3) Ma starts processing jl?Z). and the AGV
sends j7(1) to machine M.

(4) My starts processing j~{1), while the empty
AGV travels to Sp-

(Go to Step 2 after letting k+«2 and s<l.)

Step 2.

(5) The AGV sends jS(k+1), the (k+1)-th job in
the s-th cycle, to M from Sy, and
exchanges it for job js(ﬁ) after it s
finished on Mgy

(6) M, starts processing 35(k+1), while the AGV
sends js(k) to My, where it is exchanged for
iS(k-1) after it is finished on My.

(7) M, starts processing iS{k), an the AGV
sends jS(k-1) to unloading station S, where
the finished job is deposited.

(If s = mand k = nS—l, go to Step 4.
Otherwise go to Step 3.)

Step 3.

(8) The empty AGV travels to Sl from Su'
(Return to Step 2 after letting k < k+1 if
k<ng, otherwise k<0 and s+s+l.)

Step 4.

(9) The empty AGV travels to My from S, and
sends j™(n;), the last job in the last cycle
to M, after it is finished on M.

(10) My, starts processing job jm(nm?, while the
AGV  sends j™(n,-1) to S,, and then travels
to Mb.

(11) The AGV sends j™(n
finished on My,.

(Halt.) | |

n) to S, after it is

Fig. 2 illustrates the above behavior in
the s-th cycle.
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Fig.2 Gantt Charts of Cyclic Schedules




3. Formulation of Schedule

The following notations are used to
formulate a schedule.

p,{J), pp(j): positive processing times of job j
on machines Mﬁ and M, respectively.

tla' ab’ tb : nonnegative transportation times
for the AGV to send a job from 8, to M,, from
M, to My and from My to S, rcspoctxvely

tays t ul’ tuar tup: nonncgatlve times for the
empty AGV Lravels from M, to Sl, from Sy to

Sl' froy Su 8 from to Mb,
respectively.
trn?c; tiattapttputtul: @ turnaround time of the

Ty(j): time instant when job j is 1loaded the
AGV at Sy.

Tali), Tp(J): time Instants when M, and My
start processing job j, respectively.

T,(j): time instant when job j is unloaded the
AGV at Su.i.c., the completion time of job j.

Let w5=1j%(1),3%(2),...,i5(ng) 1, s=1,2,...m
be a sequence of fig jobs to be processed in the

s-th cycle. Then the schedule for « can be
formulated as follows.
it = o. (2)
0] = TGt (3)
a 1 la-
TGN = T et (4)

Tolih )] = max(r, (L 1ep, 57 )T,
T, (1 (2)) 4ty ) (5)
TN = Tty ey, (6)
TN = TGl () Tty
T G = Ty (k-3)1+t ;. k=4,5,...m, and
TS 0] = T8 (k-3)1ety,
k=1,2,..,ng, s=2,3,..,m. (7
Tal3%(k+1)] = max{T,[3% (k) l+p,[i%(K)],
TS (keD) 19t}
k=0,1,....n4-1, s=1,2,...,m.  (8)
Tpl3® (k)] = max{T,[J5(k+1)1+tyy,
Tpl3%(k-1) 1+pp {35 (k-1)1},
k=1,2,...,n4-1, s=1,2,...,m, and
Ty 135 (ng) 1 = max{T, 135 L (1) vty
T35 (ng-1)1+py (5% (ng-1)1},
s=1,2,...,m-1. (9)
TSR] = TliS (k) Tty
k=1,2,...,n4-1, s=1,2,...,m, and
T 3% )1 = TS (1) 1ety,,

$=1,2,...,m-1. (10)

Ty 3™ (g1 = max{T 15" (ng-2) ]+t + by,
T3 ) 1+p, 13 () Tet gy,
Tpl3™ (-1 T+py 1) (ny-1313. (11)
Tyl i™ng) 1 = Ty15™ (ng) 1
emax{pp (3™ (n) 1, tpyttypt ttyp. (12)
where (1) and
T3 (0) 1=, (51 (0) 1=p, 131 (0) 1=py 151 (0) 10, (13)
are assumed for notdfloaal convenlonCL
For sequence 7= o™y with w8=(j(1)
j(2),..,J(nS)) deflno each cyc]P time by
Cola®) = TGS HDI-T 301, s=1,2,..n-1,

and Ci (™)

"

T, 3™ (g} 1-T 3™ (1) ] {14)

Let
AljI=max{p,[j},t  q} and

Bljl=max{py[J1.t . q}. (15)

Then the following upper bound of each cycle
time can be obtained.

Lemma 1. For sequence 7°={j%(1),j%(2),...,

Sng)}, s=1,2,...,m,
Cutel) < oty maxtals (e 1L BT GO )
+mnx{Pa[j (3], ty¢ eyt +Tepgs (16)
CtrS) « gt max(ALIS(K)1,  BLIS(k-1)1),
$=2,3,...,m-1, and (17)
Cen™) < Zizalmax{A[jm(k)], BL™(k-1)1)
max{p, " ()1, trpqs ppli™(ng-101}
smax{py (3™ (ng) byt typdl-tyy,  (18)
hold, where (1) is assumed.

Proof. In the following only the case of
intermediate cycle, m>s>1, will be proven. (The
remaining cases can be shown in a similar way.)
It follows by (9},(8) and (7) that

Thl3%00)) = max{T,[j%(k+1)1+ty,

Ty (3% (k-1) Tepy (5% (k-1)1)
= max {T,15%(k) 1+, 155 (k) Tet gy,

Tl[js(k+1)1+tla+cab,
Tb[js(k—1)1+prJS(k~1)]}
= max{T,[3% (k) 1+py (3% (K) T+t

Tyl (k=11 1+t g,

T3 (k1) 1+py, 135 (k=111
k=1,2,...,ng-1. (19)

This means by (9) and (15) that



Tpl3% (k)1 < TpiiS(k-1)1+max{A[j5(k)],
BjS(k-1)1}, k=1,2,....ng-1.
Thus we have by (14), (7) and (10) that
0 (5%) = Ty l3S (ng-1)1-Ty 155 Hng_;-1)]
< a5 001, BUSK-D)1Y. W
4. An Approximation Algorithm
schedule that

defined
NP-

Our objective 1is to find a
minimizes the cycle time in each cycle
by (14). This problem 1is, however,
complete, even if t.,q4 = 0, and there is only a
single cycle, as sRown by Papadimitriou and
Kanellakis, [6]. we propose an approximation
algorithm that minimizes the upper bound of each
cycle time given in Lemma 1, instead of the
cycle time itself. This algorithm is based on
the Gilmore and Gomory's algorithm [1) which can
solve the following traveling salesman problem
(denoted TSP).

TSP: There are n cities {0,1,..,n-1}, each
of which a traveling salesman has to visit
cxactly once. The cost of traveling from city i
to city j is given by

c(i,j) = max{A(j), B(i)}, (20)
where A(k) and B(k) are given for each city k.
Thus the cost of tour »=[j(0)-j{1)-...-j(n-1}~-
jlo)] is given by

n-1
Toln) = ZIpeli(k-1),5(k)1 + cli(n-1),5(0)]
n-1
= Ip-gmax{Alj(k)],B{j(k-1)1}
+ max{A{j(0}],B[j(n-1)]1}. (21)
We ask an optimal tour that minimizes the tour
cost (21).
Problem TSP is well known as a solvable case

of the traveling salesman problem, since Gilmore
and Gomory [1] bhave given an O(nlogn) time
algorithm for 1it. The minimization of upper
bound of each cycle time given by Lemma 1 can be
reduced to an instance of problem TSP as shown
in the following. We begin with an intermediate

s-th cycle, 1.e., 8=2,3,...,m-1. The 1st and
the last cycles will be discussed after that.
Assume that we an

.- ave _Tlreadg_lobtained

oggimal sequence, w =[jS (1),] 2),...,

357 ng_1)1 for the (s-1)-th cycle, Let J%={1,2,
Sng) and w=(1%(1),5%(2), ... 3%(ng)] be

the set of ng jobs and a sequence in~ the s-th

cycle, respectively, then
UBS = max{A[j®(0)], B[5%(-1)1}
ng-1 :S s
+ Ep-qmax{AlJ>(k)],B[J~ (k-1)1} (22)
is an upper bound of the minimum cycle time in
the s-th cycle, as shown in Lemma 1. On the
other hand, consider a TSP with set of n_ cities,
{0,J5(1),....j%(ng-1)} and A[j] and B[] given
by (15) except that
A(0) = max_ . B(j), and
lcjeng
B(0) = max{pyli% Tng 1), trpgt- (23)
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Then for tour »°=[j%(0)-3%(1)-..-j (ng-1)-35(0)]
with j5(0)=0, the tour cost of (21) is given by
ne—1

To(nS) = 521 max{ALJS(k)1,BI3S(k-1)1}+A00].

Thus by (22)

UBS = T¢(n®)-Al0]+max{A[J5(0),B[}%(-1)1}.
This and the assumption on the (s-1)-th cycle
already obtained mean that the minimum UB® for
job set,{j%(1),5%(2),..,3%(ng-1)}, that is a
closer upper bound of the minimum cycle time,
can be obtained by solving the corresponding
TSP. That is, if 7°=[0-j%(1)-..-j%(ng-1)-0] s
an optimal tour, then ) scgucncc
WS=[jS(1),jS(2),..,js(nq—l)] minimizes UB> for
job set {j®(1),..,3%(ng-1)}.  Therefore, the
minimum UB® for the entire job set (1,2,...ns},
that is the closest upper bound of the minimum
cycle time, can be obtained by solving ng
TSP's, and selecting the best among the ng
tours obtained, as shown 1in the following
procedure.

Approximation Algorithm for the s-th Cycle :

1.

Step
(1) Let JS={1.2...,nS) be the set of n. jobs

in

the s-th cycle, and A[j] and B[{j] for jc J°
are given by (15).

(2) Let A[0] and B{O] be given by (23).

(3) T ¥ew , and k0.

Step 2. If k < ng, then go to Step 3 after
letting k <« k+«1. Otherwise, let n5=(0-j5(1)-
..~3%(ng-1)-0] be a tour with T %] = T.*, then
S =0 3%(1),3%(2), ..., 3%(ng-17,3%(ng ) is a

8 Ha?t,.

scquence with the minimum UB®.

Step 3.

(4) Solve TSP with set of cities, (JS5-{k})u{0}.
and let m° be an optimal tour.

(5) If T, InS1<T,*, then,

35 (ngyek, and T T In5].

(6) Go to Step 2. N

table 1 shows a problem instance with three
cycles, each consisting of 5 jobs, where p, and
pb represent processing times on two machincs.
Fig.3 shows cyclic schedules obtained by
applying the above algorithm to problem instance
shown in Table 1, where j®(k), s=1,2,3,
k=1,2,..,5, represent job k in the s-th cycle.
Note that jobs in Table 1 are renumbered
according to schedules obtained. It can be
easily seen from Fig.3 (and Table 1) that each
adjacent jobs 1in schedules obtained have a
tendency to have

PaliS00T £ ppliS(k-1)]

Now we have the following theorem
above discussion.

from the

Theorem 1: The above algorithm giges a
the minimum UBS given by (22) in O(nq log nq)
time. ) )

modification
. the upper

of

The above algorithm wit?
bound

B[0}=0 in Step 1 minimizes UB



for the first cycle given by (16). It also
Table 1. Problem Instance minimizes UBm, the upper bound for the 1last
(m=3, n5=5, trnd=6’ Pmean=lo’ Cv=0.5) (i.e., the m-th) given by (18) by
n modifying
m>3| 1 2 3 4 5
P 5 1518 16 8 T[] «Telm"Temax {py J™ () 1, tpy*typ}-
Sg é :g Z EZ 12 as well as the modification of B[0]=0.
2 Pbi 11 3 2 14 4 5. Computer Simulation
3 Pal 8 16 9 8 10 )

Phl 18 10 8 A 15 In order to validate the performance of the
proposed approximation algorithm, some computer
simulations were executed. That is, the
following parameters were used:

m=5; the number of cycles fixed to 5.
nS=10; the number of jobs in each cycle, s=1,
2,..,5, fixed to 10.
CYCLE TIME Pmean:SO; the average processing time of jobs
—____4\ on two machines fixed to 50.
- : ¢ : f Cv; coefficient of wvariation of job
K3) ﬂQO JkS) JZG) ﬁkz processing times. 4(J) and py(j) are

iol ia liw e 20

\ u=(1-/3 CV)P
M - - .
o idlio el e Jie] respectively.
M [ trnd/Pnean’
SU 1\/* 1 1 q 4) RE =
o o e J -

a) The First Cycle (s=1)

CYCLE TiME

Two

j; j{ ni ;\_ given by uniform ra

relative
solution,

ne and v=(1+/3 CV)P

p,lJ)

nﬁom integers taken
from interval [u,v], where u and v are
given by

mean®

the ratio of turnaround time of
the AGV to the gean progsssing time. ox

100{ZF [C (m° ) -Co (m™ ) 1}/TF 4 C (™)
error of approximate
to optimal solution, r°7
where optimal solutions were calculated

a branch-and-vound algorithm [3].

them

2y P A9 A s | Bo A
K

come first service (dcnoted

S
—f :
Mq|ﬂ<5> [i20) 20 _2of\aa| Zs | Limes used

approximation algorithms were compared;
proposced one based on
other is the first

FCFS) which is some

in the queuing analysis of system
Fig. 4 shows
where each result presents
\ 20 problem instances tested.
from these results that the

results obtained,
the mean value over
It can be concluded
proposed approximate
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Fig.3 Cyclic Schedules Obtained by
the Approximation Algorithm
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6. Conclusion

An optimal cyclic scheduling problem for a
FMC  modeled by a two~machine flowshop with an
AGV and APC's was discussed. Since this problcem
is NP-complete, an approximation algorithm based
omr Gilmore and Gomory's TSP algorithm was
proposed. Computer simulations implemented
showed that the approximation algorithm proposed
gives schedules with mean relative errors within
2 (%) in wide ranges of The turnaround times of
the AGV  and the cocfficient variation of job
processing times.

Based on these results, We are now going on
a study on an cyclic scheduling problem for a
FMC with arbitrary number of APC's.
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