• Title/Summary/Keyword: Automated Construction System

Search Result 303, Processing Time 0.028 seconds

TRACKING LIFT-PATHS OF A ROBOTIC TOWERCRANE WITH ENCODER SENSORS

  • Suyeul Park;Ghang, Lee;Joonbeom cho;Sungil Hham;Ahram Han;Taekwan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.250-256
    • /
    • 2009
  • This paper presents a robotic tower-crane system using encoder and gyroscope sensors as path tracking devices. Tower crane work is often associated with falling accidents and industrial disasters. Such problems often incur a loss of time and money for the contractor. For this reason, many studies have been done on an automatic tower crane. As a part of 5-year 23-million-dollar research project in Korea, we are developing a robotic tower crane which aims to improve the safety level and productivity. We selected a luffing tower crane, which is commonly used in urban construction projects today, as a platform for the robotic tower crane system. This system comprises two modules: the automated path planning module and the path tracking module. The automated path planning system uses the 3D Cartesian coordinates. When the robotic tower crane lifts construction material, the algorithm creates a line, which represents a lifting path, in virtual space. This algorithm seeks and generates the best route to lift construction material while avoiding known obstacles from real construction site. The path tracking system detects the location of a lifted material in terms of the 3D coordinate values using various types of sensors including adopts encoder and gyroscope sensors. We are testing various sensors as a candidate for the path tracking device. This specific study focuses on how to employ encoder and gyroscope sensors in the robotic crane These sensors measure a movement and rotary motion of the robotic tower crane. Finally, the movement of the robotic tower crane is displayed in a virtual space that synthesizes the data from two modules: the automatically planned path and the tracked paths. We are currently field-testing the feasibility of the proposed system using an actual tower crane. In the next step, the robotic tower crane will be applied to actual construction sites with a following analysis of the crane's productivity in order to ascertain its economic efficiency.

  • PDF

Development of Object Detection Algorithm Using Laser Sensor for Intelligent Excavation Work (자동화 굴삭기 작업을 위한 레이저 선서의 장애물 탐지 알고리즘 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.364-367
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop object detection algorithm for automated safety system in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability and verified its performance by several tests. The authors developed the objects detecting algorithm for user interface program using laser sensor. The results of this study would be the basis for developing the automated object detection system.

  • PDF

3-D Graphical Model-Based Design and Control of Automated Equipment (3차원 그래픽 모델에 근거한 자동화 장비의 설계 및 조종)

  • Seo Jongwon;Haas Carl
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.188-191
    • /
    • 2002
  • This paper concerns 3-D graphical modeling and simulation techniques for design and control of automated equipment for construction and facility maintenance. A case study on the use of 3-D graphics techniques for developing a power plant maintenance robot is presented. By simulating equipment operation within the 3-D geometry models of the work environment the environment design was improved. The 3-D graphical models of the equipment and the work environment were further utilized for the control of the robot from a remote distance. By presenting the real-time updated equipment configuration and the work environment to the operator, the graphical model-based equipment control system helped the operator overcome the problems associated with spatial perception. The collision between the robot and the plant structures was also avoided based the real-time analysis of the dynamically updated graphical models.

  • PDF

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Development of Construction Factory for Automated Building Construction System (건축물 시공 자동화 시스템 구축을 위한 건설공장 구조체 개발)

  • Kim, Tae-Hoon;Shin, Yoon-Seok;Cho, Hun-Hee;Kang, Kyung-In;Park, Kwi-Tae
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.163-169
    • /
    • 2008
  • The application of robot technology on construction sites is recognized an effective solution to the problems caused by labor shortage on the construction industry, and relevant studies are being carried out increasingly. Automatic construction system for frames of high-rise building was developed in Japan in 1990's. Practical use o F the system, however, was failed due to inefficiency Now, we are developing economic and practical automatic construction system that is lighter and suitable for building construction In Korea. This study has discussed developing the system of construction factory and climbing control system, which is the core technology of the automatic construction system in Korea.

  • PDF

Research on the Process of Constructing Application Systems Using the E-R Model and an Automated Application Generator (E-R 모델과 자동생성기를 이용한 응용시스템의 구축 과정에 관한 연구)

  • Chung, Il-Choo
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.133-155
    • /
    • 2005
  • This Paper makes an attempt to suggest a process of automatically generating application software based on the Entity-Relationship model 1. The designer develops an E-R model of an real-world system. 2. The designer inputs the entity and relationship types, and attributes shown in the E-R model, and also the basic operations of the application system to the software generator. 3. The application generator produces database schema and link information between application programs, and then automatically generates a stereo-type application system. In order for the automated application generator to build the application system in a systematic way, four basic program generation rules have been suggested. A set of computer programs have been developed in order to show the applicability of the automated software generation process suggested in this paper. By following each rule with the generator, the designer can build an application in an efficient manner compared with traditional (manual programming) approaches. It has been demonstrated from the case study that the idea of applying an automated generator in systems development based upon the E-R model is feasible.

  • PDF

Development of Automated Monitoring System for Soft Ground Settlement Based on Hole Senor (홀센서 기반의 연약지반 자동 지반침하 계측시스템 개발)

  • Jeon, Je-Sung;Lee, Keun-Ho;Yoon, Dong-Gu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.39-52
    • /
    • 2012
  • Magnetic sensing system and automated monitoring system based on digital hall sensor for ground settlement are developed to change traditional method for monitoring surface settlement and underground settlement by manual type and to overcome technical limits of existing automated settlement monitoring system. It's possible to monitor surface settlement and underground settlement with multi-points at the same time in a single hole with NX size. It was possible to verify technical confidence and stability by several case studies of soft ground improvement project.

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.

A Study on the Construction of Test Track for Automated Guideway Transit (경량전철 시험선 구축에 관한 연구)

  • 정종덕;이안호;한석윤
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.447-454
    • /
    • 2000
  • As the AGT system has never operated in Korea, the construction of test track is essential to the acquisition of safety for the passengers. However, the test track is a synthetic system including vehicle, power system, signalling, track etc, several factors must be considered. In this paper, we suggest the general guideline for the test track of AGT system and test items on test track through the investigation of leading test facilities in the world. Through continuous study and investigation, we finally will build the test track to verify the reliability requirements between the train and infrastructures

  • PDF

Study on the Development of K-City Roadmap through the Standard Analysis of the Test-Bed for Automated Vehicles in China (중국 자율주행차 테스트베드 관련 표준 분석을 통한 K-City 고도화 방안 수립에 관한 연구)

  • Lee, Sanghyun;Ko, Hangeom;Lee, Hyunewoo;Cho, Seongwoo;Yun, Ilsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.6-13
    • /
    • 2022
  • The Ministry of Land, Infrastructure and Transport (MoLIT) and the Korean Automobile Testing and Research Institute (KATRI) are supporting the development of Lv.3 automated vehicle (hereinafter, AV) technology by constructing an automated driving pilot city (as known as K-City) equipped with total 5 evaluation environments (urban, motorway, suburban, community road, and autonomous parking facility) which is a test bed exclusively for AV (2017~2018). An upgrade project is in a progress to materialize harsh environments such as bad weather (rain, fog, etc.) and reproduction of communication jamming (GPS blocking, etc.) with the purpose of supporting the development of Lv.4 connected & automated vehicle (hereinafter, CAV) technology (2019~2022). We intend to proactively establish a national level standard for CAV test-bed and test road requirements, test method, etc. for establishment of a road map for the construction of the test bed which is being promoted step by step and analyze and, when required, benchmark the case of China that has announced and is utilizing it. Through this, we plan to define standardized requirements (evaluation facility, evaluation system, etc.) on the test bed for the development of Lv.4/4+ CAV technology and utilize the same for the design and construction of a test bed, establishment of a road map for the construction of a real car-based test environment related to the support for autonomous driving service substantiation, etc. through provision of an evaluation environment utilizing K-City, and the establishment of a K-City upgrade strategies, etc.