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Abstract: Construction inspection is a crucial stage that ensures that all contractual requirements 

of a construction project are verified. The construction inspection capabilities among state highway 

agencies have been greatly affected due to budget reduction. As a result, efficient inspection 

practices such as risk-based inspection are required to optimize the use of limited resources without 

compromising inspection quality. Automated prioritization of textual requirements according to 

their criticality would be extremely helpful since contractual requirements are typically presented 

in an unstructured natural language in voluminous text documents. The current study introduces a 

novel model for predicting the risk level of requirements using machine learning (ML) algorithms. 

The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic 

regression, and random forest. The training data includes sequences of requirement texts which 

were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic 

systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy 

input variables, and implements the fuzzy inference rules to determine the labels of requirements. 

The performance of the model was examined on labeled dataset created by fuzzy inference rules 

and three different membership functions. The developed requirement risk prediction model 

yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed 

model is expected to provide construction inspectors with a means for the automated prioritization 

of voluminous requirements by their importance, thus help to maximize the effectiveness of 

inspection activities under resource constraints. 

 

Key words:  project requirements, construction contracts, natural language processing, fuzzy logic 

systems, requirement prioritization 

1. INTRODUCTION 

The contractual requirements in the construction contracts reflect the wishes and expectations of 

the client towards the final facility. In construction projects, the quality control (QC) staff is 

responsible for assuring that all requirements in the contract are met in adequately. The assurance 
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of the completion of requirements is crucial to avoid any costly redesign and rework [1]. [2] also 

found the non-conformance of requirements to be an important reason behind the rework in 

construction projects. Typically, the QC staff uses the daily progress reports to document the 

progress and examine the contractor’s management, safety, environmental, and design processes 

in accordance with the requirements. Since the requirements are often described as lengthy text in 

contracts [1], there is a considerable burden imposed on practitioners to read and prioritize them 

for evaluating the contractor’s procedures. This manual practice of requirement comprehension and 

prioritization is time-consuming, tedious, and error-prone. 

Requirement prioritization is an integral component of the QC process due to the current shortage 

of inspection resources (budget, time, and manpower) experienced by the state highway agencies 

[3], [4]. For instance, a 15% reduction in the inspection staff of the Indiana Department of 

Transportation (INDOT) has been observed just between a gap of 4 years (i.e., 2011 and 2015) [4]. 

In addition, the increasing complexity and size of the construction projects further demand an 

increment in the inspection resources and material testing. The prioritization of requirements could 

be an effective solution to optimize the inspection resources accordingly to their importance and 

risk levels [5]. However, prioritization is a challenging task since the requirements involve multiple 

risks (e.g., severity, probability, detectability, etc.) along with different relationships with each risk 

factor [6]. For instance, a requirement may be of high priority in terms of severity but low priority 

in terms of detectability. The prioritization requires all risk factors to be considered while 

identifying the high priority and low priority requirements. Therefore, an effective method is 

needed for prioritizing the requirements to identify the most critical inspection items.  

Previously, a few researchers have attempted to develop frameworks for requirements 

prioritization [3], [4]; however, the developed frameworks are not generalized, and they are 

applicable only to a few types of testing requirements. To address this gap, the current study 

attempts to develop a robust risk-based requirement prioritization model using supervised ML 

algorithms. The proposed model can predict the risk level of a requirement according to the features 

present in the requirement text. The model is trained and tested on a labeled dataset produced using 

fuzzy logic systems. 

2. BACKGROUND 

2.1. Fuzzy Logic Systems 

Fuzzy logic systems are widely used in problems where there is ambiguity or uncertainty present 

in the values of variables involved in computations [7]. In real-world problems, the decision-

makers often face scenarios where they are required to consider multiple factors to reach a decision. 

However, it is almost impossible to compute the effect of those factors on the potential outcome of 

a decision, and this usually results in very optimistic or pessimistic decisions [8]. To address such 

situations, [9] introduced a fuzzy theory that deals with the uncertainty due to vague and incomplete 

information. A fuzzy set is defined as a class of objects with a degree of memberships [10]. These 

sets correspond to the fuzzy numbers that indicate the degree of relevance to each object by a 

membership grade value ranging between 0 and 1 [10]. For instance, a triangular fuzzy number can 

be represented by (a,b,c) where a,b, and c correspond to the smallest, most promising value, and 

the largest value for a fuzzy set. 

2.2. Fuzzy Failure Model and Effects Analysis (FMEA) 

Failure mode and effects analysis (FMEA) is a popular risk measurement tool used in different 

domains, including construction such as project risk management [8]. In FMEA, a risk priority 

number (RPN) is computed to determine key risks. This method is used to address several problems, 
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including the prioritization or ranking of objects where the object with the highest RPN value is 

considered to be the one involving the highest risk. The RPN value is the product of the following 

three risk factors: (1) severity, (2) probability, and (3) detectability. Here, severity indicates the 

effects or consequences of a failure of a requirement, probability indicates the likelihood of a failure 

of a requirement, and detectability corresponds to the possibility of the failure being not detected 

by the QC team. Generally, the ratings ranging from 1 to 5 are assigned where a value of 5 

corresponds to a requirement that is extremely severe, impossible to detect, and very likely to occur.  

2.3. Related Studies 

Several researchers have attempted to develop requirement prioritization models in different 

domains to support decision-making. However, the construction domain currently lacks a 

generalized model for requirement prioritization. One of the initial efforts in the construction 

domain that aimed to develop a requirement prioritization framework was made by [4]. The authors 

used the surveys and expert's opinions to introduce a risk-based requirement prioritization model 

to support construction inspection with limited resources. A total of 333 inspection activities were 

selected and narrowed down to 126 activities which were prioritized according to the surveys and 

responses from practitioners. In addition, requirements associated with only four categories, such 

as earthwork, bridge deck, concrete, and asphalt pavements, were included in the activities list. In 

another study, [6] also proposed a risk-based prioritization model that can rank the inspection-

related requirements according to the consequences and impacts due to the reduced inspection. 

Several authors employed fuzzy rule-based systems to prioritize failure modes in other domains. 

For instance, in mechanical domain, [11] considered risk factors (severity, probability, detectability) 

as input features which were then processed using the fuzzy rules to compute a fuzzy risk priority 

number (FRPN). The failure modes were then ranked according to their FRPN values. In another 

study, [12] implemented the same fuzzy rule-based method to prioritize failure modes for the 

anesthesia process. The authors compared the performance of two membership functions (MFs), 

namely triangular and trapezoidal MFs. In the aviation domain, [13] introduced the fuzzy 

environment-based approach to extend the traditional FMEA method. Four experts were invited to 

provide ratings for severity, probability, and detectability for failure modes which were then 

processed using the fuzzy logic systems to rank failure modes for aircraft landing systems. 

Undoubtedly, previous studies have provided major contributions towards prioritization of 

contract requirements. However, the current risk-based construction requirement prioritization 

models are limited in terms of applicability and scalability as they primarily include a very limited 

number of requirements mainly in material testing. Given a new project with a new set of 

contracting requirements, significant time and effort is required for engineers to assess risks of 

requirement clauses. This manual process of prioritizing requirements is greatly challenging for 

practitioners. There is currently no scalable technique available that can enable high efficiency in 

requirement prioritization, particularly for complex construction projects such as infrastructure 

systems which includes a large set of requirements. Therefore, the current study has attempted to 

develop a generalized data-driven model that learns risks results from past projects to predict the 

risk level of new contracting requirements to prioritize them to optimize the inspection resources.  

3. METHODOLOGY 

This section presents the methodology adopted for the development of the risk-based 

requirement prioritization model. The proposed methodology is comprised of three steps shown in 

Figure 1. The first step involved the labeling of the corpus using fuzzy rule-based systems. In the 

second step, the requirements corpus was pre-processed and classified according to the features 



307 

 

present in the requirement text. The classification performance was evaluated in the final third step 

in terms of precision, recall, and f-score. The details of the three steps are provided below. 

 

Figure 1. Methodology of the proposed requirement prioritization framework 

3.1. Fuzzy Rule-Based System for Corpus Labeling 

The first step aims to prepare a labeled dataset using fuzzy logic systems. The reason behind 

implementing the fuzzy logic was the vagueness and uncertainty in estimating the true values for 

risk factors such as severity, probability, and detectability. Therefore, it is almost impossible to 

estimate a precise numeric risk score for a requirement. Fuzzy logic addresses this limitation of 

vagueness and uncertainty where the crisp input values are fed to the fuzzy model which predicts 

the fuzzy output values of risk scores, which were later converted into the crisp output risk scores. 

The steps involved in the fuzzy rule-based systems are discussed below. 

3.1.1. Fuzzification 

Prior to the fuzzification, an initial labeled requirement corpus including 1331 requirements 

labeled with numeric values of three risk factors (i.e., severity, probability, and detectability) was 

prepared. The requirements were obtained from a real design-build (DB) project and labeled by 

two experts having an in-depth knowledge of construction contracts and inspection. The 

fuzzification process aims at converting the crisp labels of risk factors into fuzzy sets. The primary 

step in the fuzzification process is the creation of MF of fuzzy input sets. The major properties of 

the MF are the number of linguistic terms (degree of risk levels in our study), membership function 

type (i.e., trapezoidal, triangular, gaussian, etc.), a numerical range of risk factor x (e.g., 100 in our 

study), and overlap between each MF. The degree of risk levels used in our study are five (very 

low, low, medium, high, very high), and the type of membership function implemented in this study 

included triangular, trapezoidal, and gaussian. 

3.1.2. Rule-based inference system 

A fuzzy inference system combines the fuzzy inputs and rules to produce a fuzzy conclusion. 

Several fuzzy IF-THEN rules were developed using the expert's judgment and experience in this 

study. In a fuzzy If-THEN rule, the antecedent part after the IF statement corresponds to the fuzzy 

input variables, while the consequent part after the THEN statement corresponds to the fuzzy output 

variable. Each fuzzy IF-THEN rule is expressed as: 

IF severity is Low and probability is Low, and detectability is High, THEN risk is Low.  

Since five-degree risk factors were considered along with the number of risk factors equal to 

three (i.e., severity, probability, detectability), the total number of rules developed in this study was 

equal to the total number of possible combinations (i.e., 5x5x5 = 125) 

3.1.3. Defuzzification 

Defuzzification process aims to convert the fuzzy output into the crisp output. In this study, the 

center of area or centroid defuzzification method was implemented since it was the most commonly 

used and highest performing method reported in literature. According to the centroid 
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defuzzification method, the output risk score shall correspond to the center of the shaded area 

shown in Figure 2.  

 

Figure 2. Implementation of centroid defuzzification method 

3.2. Requirement Classification 

After corpus labeling, the labeled corpus was employed for the training and testing of the 

classification model to classify the requirements in terms of their risk level or priority level. The 

sequence of the methods applied for the requirement classification is described below. 

3.2.1. Requirement pre-processing 

Several natural language processing (NLP) methods were implemented to convert the 

requirement corpus into an adequate format after removing all unnecessary and noise features. The 

NLP methods implemented in this study are as follows: (1) Lowercasing converted the requirement 

corpus into a lowercase format. It helped the model in considering the similar terms “Design” and 

“design” as one word. (2) Punctuations and stop words removal were applied to remove all 

punctuations and stop words (such as the, of, am, etc.) from the requirement corpus. It helped in 

improving the model performance since such noise features did not contribute towards the 

classification task. (3) Tokenization converted the series of text into individual tokens. This study 

considered each word, numeric, or a space as one single token. (4) Lemmatization involved the 

conversion of different grammatical forms of a word (such as design, designed, designs, designing, 

etc.) into the root form (such as design). For instance, the following high-risk requirement “LEDs 

will have a 30-degree viewing angle.” was converted into [‘leds’, ‘will’, ‘have’, ‘30’, ‘degree’ 

view’, ‘angle’] after applying the NLP methods for pre-processing. 

3.2.2. Requirement vectorization 

Since the computers cannot understand the text in English language, the requirement text is 

required to be converted into a vector format to feed it as input to the computer for training and 

testing of algorithms. In this study, the widely adopted Bag-of-words (BOW) method was 

implemented to convert the text into a vector format. In BOW, each requirement is represented as 

a vector of N elements where N corresponds to the number of words in the whole corpus. The 

elements of a vector include the values as either zero or numeric, indicating the absence or presence 

of a word respectively in requirement text. The numeric values in the vector indicate the weights 

of the word, which were determined by two methods, namely term frequency (TF) and term 

frequency-invert document frequency (TF-IDF) methods. The TF method assigns the weights 

according to the frequency of a word in a requirement statement. However, there are certain 

domain-specific words that are highly frequent in the requirement text, but they do not discriminate 

a low priority requirement from a high priority requirement. The weights of such low content words 

are modified by the IDF factor in the TF-IDF method. The IDF factor scales up the weights of rare 

discriminating words while reducing the weights of high-frequency low content words. 
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3.2.3. Implementation of machine learning algorithms 

Before implementation of the ML algorithm, the requirement corpus was divided into a training 

and testing set using the k-fold cross-validation method. In this method, the whole corpus is split 

into k equal sets, and the model is trained k times where k-1 sets are used for the training of the 

model while the remaining one set is used for the testing. The training process is terminated when 

all the unique k sets are employed as testing sets in k iterations. After splitting the corpus into 

training and testing sets, four ML algorithms were implemented to develop the classification 

models. Each algorithm has merits and demerits, showing different perfromances on different 

datasets in different domains [14]. None of the algorithms has consistently outperformed the other 

algorithms in all domains. Therefore, we tested four most commonly used algorithms in this study 

to compare their performance. The algorithms included naïve Bayesian (NB), support vector 

machines (SVM), logistic regression (LR), and random forest (RF). NB is the simplest algorithm 

that employs the Bayesian theorem considering an assumption that the features include in the 

corpus are independent. SVM finds the best hyperplane to split the data into unique classes in a 

high dimensional vector space with the maximum margin. Moreover, LR is a probabilistic 

algorithm that determines the correlation between the dependent and independent variables to 

predict the probabilities of different risk levels for the requirements. RF is an ensemble algorithm 

that trains multiple decision tree classifiers and merges them to develop a final classifier. 

3.3. Evaluation 

The performance of the proposed classification models was evaluated in terms of three different 

metrics: precision, recall, and f-score. Precision indicates the number of samples of a class correctly 

predicted by the model among the total predictions made by the model for that class. The recall 

represents the number of samples correctly identified by the model from the total number of 

samples present in the testing set. A trade-off is generally observed between precision and recall. 

This trade-off is addressed by introducing the f-score metric which is the harmonic mean of the 

precision and recall. The metrics used in this study are the weighted average of all the classes. 

4. RESULTS AND DISCUSSIONS 

This section presents the results of the rule-based fuzzy logic systems and the ML-based text 

classification models. The labeled dataset produced through the fuzzy rules was examined. 

Following this, the performance of four ML algorithms to classify the requirements in terms of 

different risk levels was evaluated. The detailed results are discussed in the following subsections. 

4.1. Dataset 

A labeled dataset is the prerequisite to the development of classification models. In this study, a 

rule-based approach was used for the labeling of requirements. Five-degree risk levels were 

considered to construct the rules and fuzzy sets for membership functions. The five degrees of risk 

levels included very low, low, medium, high, and very high. A total of 125 rules were constructed 

in the fuzzy logic system. In addition, the triangular, trapezoidal, and gaussian membership 

functions were applied in this study. The risk scores predicted by the fuzzy rules using different 

MF shapes were analyzed and compared to identify the unique risk scores, minimum and maximum 

risk scores, range of risk scores and distribution of different risk levels in the dataset. Table 1 shows 

the attributes of the datasets produced by the three MF shapes. As shown, the gaussian MF shape 

produced a better-balanced dataset with a better distribution of the requirements of each category 

in the dataset. The dataset produced using gaussian MF shape included 42 unique risk scores with 

a comparatively higher range of 60.41. The minimum number of samples for a category in the 
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dataset produced using gaussian MF is also the highest (i.e., 64). Therefore, this dataset was 

selected to implement the ML algorithms for requirement classification. 

Table 1. Characteristics of datasets produced using different membership function shapes 

MF  

Shape 
 

Unique  

Risk Scores 

Minimum 

Value 

Maximum 

Value 
Difference Dataset Distribution* 

Triangular  21 22.59 75.75 53.16 VL: 67, L: 373, M: 488, H: 387, VH: 16 

Trapezoidal  4 22 87.33 65.33 VL: 64, L: 831, H: 429, VH: 7 

Gaussian 
 

42 22.27 82.68 60.41 VL: 373, L: 76, M: 670, H: 148, VH: 64 

*NOTE: VH = very high, H = high, M = medium, L = low, VL = very low 

4.2. Classification performance of different machine learning algorithms 

In this study, the performance of classification algorithms was evaluated using two different 

feature weighting methods (i.e., TF and TF-IDF). The results of the classification performance of 

the four algorithms using two feature weighting methods are shown in Table 2. As shown, the 

models experienced a reduction in performance when the TF method was replaced by the TF-IDF 

method for feature weighting. Among the four ML algorithms tested in this study, the RF algorithm 

achieved the highest performance in terms of precision, recall, and f-score equal to 78.18%, 

77.75%, and 75.82%, respectively. The NB and SVM algorithms experienced the highest reduction 

in precision and recall, respectively. The precision and recall of NB and SVM were dropped by 

3.0% and 1.45%, respectively, when TF-IDF method was used for feature weighting instead of the 

TF method. Generally, the TF-IDF method yields higher performance. However, this study 

reported a reduction in performance that might be due to the smaller dataset used for the training 

and testing of the model. The dataset is comprised of a small size of vocabulary or features where 

the low-frequency features are also discriminating whose removal in the TF-IDF method actually 

resulted in lower performance. 

Table 2. Performance of machine learning algorithms using TF and TF-IDF methods  

Machine  

learning algorithm 

TF Feature Weighting  TF-IDF Feature Weighting 

Precision Recall F-Score  Precision Recall F-Score 

SVM 70.85 70.76 70.01  69.47 69.31 66.28 

LR 72.20 72.03 71.60  73.28 73.32 72.71 

NB 67.65 65.41 65.93  64.65 65.29 60.33 

RF 78.18 77.75 75.82  77.71 76.76 74.34 

5. CONCLUSION 

The contractual requirements are the wishes and expectations of the owner towards the final 

facility and these requirements must be verified during the QC process to avoid any costly redesign 

and rework. The ever-increasing gap between the required and available inspection resources has 

resulted in the need for finding efficient ways to optimize them. The current study has implemented 

fuzzy rule-based systems and ML algorithms to develop a model that can prioritize the 

requirements according to their risk levels. A dataset of 1331 requirements employed for the 

classification model training was labeled by the fuzzy logic systems. The initial dataset was 

manually labeled with risk factors, including severity, probability, and detectability. The three 

aforementioned labels were converted into a single label of risk level for each requirement sample 

using the fuzzy rule-based systems. The current study tested different fuzzy MF types where the 

gaussian MF type produced a comparatively well-balanced dataset in comparison with other MF 

types. In addition, the TF weighting performed better than the TF-IDF weighting method for the 
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majority of algorithms. The highest precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, 

respectively, were revealed by the RF algorithm with TF weighting methods. 

As part of future work, the authors plan to improve the current performance of the model. The 

ontology-based methods can be implemented to compare their performance with the ML-based 

methods. Since the ontology-based methods do not require labeling of data, an increment in 

performance could be expected. However, significant efforts would be required to develop an 

ontology for such domain-specific problems. In addition, the authors will further develop separate 

models for different types of projects which may improve the performance of individual models. 
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