• Title/Summary/Keyword: Autoclave molding

Search Result 24, Processing Time 0.025 seconds

Development of Manufacturing Process of Composite Control Rods using Resin Transfer Molding Process (수지 충전 공정을 이용한 복합재 조종봉 제조 기술 개발)

  • 이상관;엄문광;변준형;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.253-256
    • /
    • 2000
  • In order to commercialize the low cost composite fabrication technology in the area of domestic aerospace structure field, Resin Transfer Molding process has been considered as an alternative process to replace the high cost autoclave technology. The end part for the development of RTM process is the control rod of flight control system of aircraft. A braided preform was triaxially designed to improve the dimensional stability and mechanical property in the direction of external loads. Through the flow analysis using CVFEM, the resin filling time was calculated and the resin injection method was determined. The results of the flow analysis were directly applied to RTM mold design. The control rod was successfully manufactured by RTM process using internal pressure. The length and outer diameter of the manufactured part are 1148mm and 32mm, respectively.

  • PDF

Mechanical Properties of the Laminated Glass Fiber-Reinforced Plastic Composites for Electromagnet Structure System (전자석 구조물용 적층 유리섬유강화 복합재료의 기계적 특성)

  • Park, Han Ju;Kim, Hak Kun;Song, Jun Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.589-595
    • /
    • 2011
  • Laminated glass fiber-reinforced plastic (GFRP) composites were applied to an insulating structure of a magnet system for a nuclear fusion device. Decreased inter-laminar strength by a strong repulsive force between coils which is induced a problem of structural integrity in laminated GFRPs. Therefore, it is important to investigate the inter-laminar characteristics of laminated GFRP composites in order to assure more reliable design and better structural integrity. Three types of the laminated GFRP composites using a high voltage insulating materials were fabricated according to each molding process. To evaluate the grade of the fabricated composites, mechanical tests, such as hardness, tensile and compressive tests,were carried out. The autoclave molding composites satisfied almost of the mechanical properties reguested at the G10 class standard, but the vacuum impregnation (VPI) and Prepreg composites did not.

Development of the Adhesive Insulator Tube based on EPDM/Kevlar for Solid Rocket Motor (고체 추진기관 적용 EPDM/Kevlar 조성의 접착형 내열 튜브 개발)

  • Kim, Jin-Yong;Lee, Won-Bok;Suh, Hyuk;Han, Cheol-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.203-206
    • /
    • 2008
  • In this study, we focused on development of the adhesive insulator using the case for solid rocket motors. Material of insulator used unvulcanized rubber based on EPDM/kevlar. In case of front insulator, preforms was made by using hot press molding, and then modified nylon film was inserted between two preforms for boots manufacturing. Rear insulator included cylinder part was embodied by only one mold with special designed and manufactured shape in the process. Boots part of rear insulator was obtained by cutting machine with hard-metal cemented carbide.

  • PDF

Development of All-in-one Case Insulation for the End-burning Solid Rocket Motor (End-burning 고체추진기관 적용 일체형 연소관 내열재 개발)

  • Kim, Jinyong;Lee, Sunjae;Choi, Jiyong;Park, Jaebeom;Lee, Sangyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1045-1047
    • /
    • 2017
  • In this study, we focused on development of the all-in-one case insulation for end-burning solid rocket motors. Material of insulation used unvulcanized rubber based on EPDM/kevlar. In case of boots insulation, preforms was made by using hot press molding, and then the tape was inserted between two preforms for all-in-one curing in the case. Finally bladder method was applied for curing of insulation.

  • PDF

Friction and Wear Characteristics of Graphite Fiber Composites (탄소 섬유 복합재료의 마찰 및 마모 특성)

  • 심현해;권오관;유재륜
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.94-100
    • /
    • 1989
  • Friction and Wear behavior of continuous graphite fiber composites was studied for different fiber orientations against the sliding direction. The effect of fiber orientation on friction and wear of the composite and on the deformation of the counterface was investigated experimentally. Pin on disk type testing machine was built and employed to generate the friction and wear data. A graphite fiber composite plate was produced by the bleeder ply molding in an autoclave and machined into rectangular pin specimens with specific fiber orientations, i.e., normal, transverse, and longitudinal directions. Three different wear conditions were employed for two different periods of time, 24 and 48 hours. The wear track of the worn specimens and the metal counterface was examined with a scanning electron microscope (SEM) to observe the damaged fibers on the surface and wear film generation on the counterface. Wear mechanism of the composite during sliding wear is proposed based on the experimental results.

Tensile Properties of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates at Low Temperatures (평직유리섬유 강화 에폭시 적층판의 저온 인장 특성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.788-795
    • /
    • 2008
  • To understand the tensile behaviors of GFRP at low temperature, three types of specimen have been used in this study. Tensile properties and fracture mechanisms for three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate were investigated at temperature range of about -30 to $15^{\circ}C$. The tensile properties of axial and edge type specimen decrease slightly with decreasing temperature to $-20^{\circ}C$. However, at $-30^{\circ}C$ the decreases in the tensile properties increased considerably. Below $-20^{\circ}C$, thickness type specimen showed a marked decreases in the tensile properties. It was obvious that the fracture manner of thickness type specimen was adhesive failure at above $-10^{\circ}C$ and a mixed adhesive and cohesive failure at below $-20^{\circ}C$.

Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates (평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

A Study on Manufacture of Integrated Composite Wing with High Aspect Ratio (고 세장비 일체형 복합재 날개 제작 연구)

  • Joo, Young-Sik;Jun, Oo-Chul;Byun, Kwan-Hwa;Cho, Chang-Min;Han, Jin-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • In this paper, the study for the manufacture of the integrated composite wing is performed. The wing has a pivoting structure and high aspect ratio to increase lift drag ratio. The wing is designed with carbon fiber composite because the wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The number of structural members is decreased by part integration to reduce manufacturing cost and the wing is manufactured with the integrated molding process by an autoclave. The material properties are identified by the coupon tests and the structural strength and stiffness are verified through the component tests.

Properties of CFRP by VaRTM process and its application to automobile engine hood (VaRTM 공법을 이용한 자동차용 엔진후드 개발)

  • Kim, Y.H.;Choi, B.K.;Jo, Y.D.;Son, J.H.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.146-149
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircrafts. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

A study on the bonding strength of co-cured T800/epoxy composite-aluminum single lap joint according to the forming and additional pressures (동시 경화법으로 제조된 T800/에폭시 복합재료-알루미늄 단면겹치기조인트의 성형압력 및 부가압력에 따른 접착강도에 관한 연구)

  • Son, Dae-Sung;Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.23-28
    • /
    • 2011
  • In this paper, the bonding strengths of co-cured T800 carbon/epoxy composite-aluminum single lap joints with and without additional pressures were investigated using the pressure information induced by the fiber tension during a filament winding process. The specimens of all the tests were fabricated by an autoclave vacuum bag de-gassing molding being controlled forming pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa including vacuum). A special device which can act uniform additional pressures on the joining part of the single lap joint specimen was designed to measure the bonding strengths of composite-aluminum liners of type III hydrogen pressure vessel fabricated by a filament winding process. After the three different additional pressures (absolute pressures of 0.1MPa, 0.3MPa and 0.7MPa) were applied to the specimens the effect of the additional pressures on the bonding strengths of the co-cured single-lap joints were evaluated.