• Title/Summary/Keyword: Auto classification

Search Result 159, Processing Time 0.027 seconds

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

AutoML and CNN-based Soft-voting Ensemble Classification Model For Road Traffic Emerging Risk Detection (도로교통 이머징 리스크 탐지를 위한 AutoML과 CNN 기반 소프트 보팅 앙상블 분류 모델)

  • Jeon, Byeong-Uk;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.14-20
    • /
    • 2021
  • Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.

Scale Invariant Auto-context for Object Segmentation and Labeling

  • Ji, Hongwei;He, Jiangping;Yang, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2881-2894
    • /
    • 2014
  • In complicated environment, context information plays an important role in image segmentation/labeling. The recently proposed auto-context algorithm is one of the effective context-based methods. However, the standard auto-context approach samples the context locations utilizing a fixed radius sequence, which is sensitive to large scale-change of objects. In this paper, we present a scale invariant auto-context (SIAC) algorithm which is an improved version of the auto-context algorithm. In order to achieve scale-invariance, we try to approximate the optimal scale for the image in an iterative way and adopt the corresponding optimal radius sequence for context location sampling, both in training and testing. In each iteration of the proposed SIAC algorithm, we use the current classification map to estimate the image scale, and the corresponding radius sequence is then used for choosing context locations. The algorithm iteratively updates the classification maps, as well as the image scales, until convergence. We demonstrate the SIAC algorithm on several image segmentation/labeling tasks. The results demonstrate improvement over the standard auto-context algorithm when large scale-change of objects exists.

The Damage Classification by Periodicity Detection of Ultrasonic Wave Signal to Occur at the Tire (타이어에서 발생하는 초음파 신호의 주기성 검출에 의한 손상 분별)

  • Oh, Young-Dal;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.107-111
    • /
    • 2010
  • The damage of tire by damage material classification method is researched as used ultrasonic wave signal to occur at a tire during vehicle driving. Auto-correlation function after having passed through an envelope detecting preprocess is used for detecting periodicity because of occurring periodic ultrasonic waves signal with tire revolution. One revolution cycle time of a damaged tire and period that calculated auto-correlation function appeared equally in experiment. The result that can classification whether or not there was a tire damage is established.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

Hyperparameter Search for Facies Classification with Bayesian Optimization (베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색)

  • Choi, Yonguk;Yoon, Daeung;Choi, Junhwan;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • With the recent advancement of computer hardware and the contribution of open source libraries to facilitate access to artificial intelligence technology, the use of machine learning (ML) and deep learning (DL) technologies in various fields of exploration geophysics has increased. In addition, ML researchers have developed complex algorithms to improve the inference accuracy of various tasks such as image, video, voice, and natural language processing, and now they are expanding their interests into the field of automatic machine learning (AutoML). AutoML can be divided into three areas: feature engineering, architecture search, and hyperparameter search. Among them, this paper focuses on hyperparamter search with Bayesian optimization, and applies it to the problem of facies classification using seismic data and well logs. The effectiveness of the Bayesian optimization technique has been demonstrated using Vincent field data by comparing with the results of the random search technique.

A Study on Classification of Variant Malware Family Based on ResNet-Variational AutoEncoder (ResNet-Variational AutoEncoder기반 변종 악성코드 패밀리 분류 연구)

  • Lee, Young-jeon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.

Lidar Based Object Recognition and Classification (자율주행을 위한 라이다 기반 객체 인식 및 분류)

  • Byeon, Yerim;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Optimizing Input Parameters of Paralichthys olivaceus Disease Classification based on SHAP Analysis (SHAP 분석 기반의 넙치 질병 분류 입력 파라미터 최적화)

  • Kyung-Won Cho;Ran Baik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1331-1336
    • /
    • 2023
  • In text-based fish disease classification using machine learning, there is a problem that the input parameters of the machine learning model are too many, but due to performance problems, the input parameters cannot be arbitrarily reduced. This paper proposes a method of optimizing input parameters specialized for Paralichthys olivaceus disease classification using SHAP analysis techniques to solve this problem,. The proposed method includes data preprocessing of disease information extracted from the halibut disease questionnaire by applying the SHAP analysis technique and evaluating a machine learning model using AutoML. Through this, the performance of the input parameters of AutoML is evaluated and the optimal input parameter combination is derived. In this study, the proposed method is expected to be able to maintain the existing performance while reducing the number of input parameters required, which will contribute to enhancing the efficiency and practicality of text-based Paralichthys olivaceus disease classification.