Hyperparameter Search for Facies Classification with Bayesian Optimization |
Choi, Yonguk
(Dept. Energy & Resources Engineering, Chonnam National University)
Yoon, Daeung (Dept. Energy & Resources Engineering, Chonnam National University) Choi, Junhwan (Dept. of Earth Resources and Environmental Engineering, Hanyang University) Byun, Joongmoo (Dept. of Earth Resources and Environmental Engineering, Hanyang University) |
1 | Yoon, D., Yeeh, Z., and Byun, J., 2020, Seismic Data Reconstruction Using Deep Bidirectional Long Short-Term Memory with Skip Connections, IEEE Geosci. Remote Sens. Lett., 1-5, doi: 10.1109/LGRS.2020.2993847. DOI |
2 | Yoon, D., Kim, S., Kim, J., Park, G., Park, H., Byun, J., Suh, J., Lee, C., Jang, I., Jo, S., and Choi, Y., 2018, Introduction of Resource Engineering with Machine Learning, CIR press, 377-396 (in Korean). |
3 | Zoph, B., and Le, Q. V., 2016, Neural Architecture Search with Reinforcement Learning, arXiv preprint arXiv:1611.01578. |
4 | Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T., 2018, Deep-learning tomography, Lead Edge, 37(1), 58-66, doi:10.1190/tle37010058.1. DOI |
5 | Baldwin, J. L., Bateman, R. M., and Wheatley, C. L., 1990, Application of a neural network to the problem of mineral identification from well logs, The Log Analyst, 31(05), 279-293. |
6 | Bergstra, J. S., Bardenet, R., Bengio, Y., and Kegl, B., 2011, Algorithms for hyper-parameter optimization, Adv. Neural. Inf. Process. Syst., 2546-2554. |
7 | Choi, J., Yoon, D., Lee, S., and Byun, J., 2019, Petrofacies characterization using best combination of multiple elastic properties, J. Pet. Sci. Eng., 181, doi: 10.1016/j.petrol.2019.06.025. |
8 | Choi, J., Kim, B., Kim, S., and Byun, J., 2017, Probabilistic facies analysis using 3D crossplot of stochastic forwardmodeling results, 87th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 3077-3081, doi: 10.1190/segam2017-17790996.1. |
9 | Delfiner, P., Peyret, O., and Serra, O., 1987, Automatic determination of lithology from well logs, SPE Formation Evaluation, 2(03), 303-310, doi: 10.2118/13290-PA. DOI |
10 | Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H., 2018, Synthetic data augmentation using GAN for improved liver lesion classification, 2018 IEEE 15th Int. Symp. Biomed. Imaging, 289-293, doi: 10.1109/ISBI.2018.8363576. |
11 | Jones, D. R., 2001, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, 21(4), 345-383. DOI |
12 | Kanter, J. M., and Veeramachaneni, K., 2015, Deep feature synthesis: Towards automating data science endeavors, 2015 IEEE Int. Conf. Data. Sci. Adv. Anal., 1-10, doi: 10.1109/DSAA.2015.7344858. |
13 | Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. Y., 2017, LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Adv. Neural Infor. Process. Syst., 30, 3149-3157. |
14 | Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F., 2017, Fast Bayesian optimization of machine learning hyperparameters on large datasets, International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 528-536, doi: 10.1214/17-EJS1335SI. |
15 | Lee, S., Choi, J., Yoon, D., and Byun, J., 2018, Automatic labeling strategy in semi-supervised seismic facies classification by integrating well logs and seismic data, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 14-19, doi: 10.1190/segam2018-2998604.1. |
16 | Li, H., Yang, W., and Yong, X., 2018, Deep learning for groundroll noise attenuation, 88th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 14-19, doi: 10.1190/segam2018-2981295.1. |
17 | Liu, H., Simonyan, K., and Yang, Y., 2018, Darts: Differentiable architecture search, arXiv preprint arXiv: 1806.09055. |
18 | Mockus, J., 2012, Bayesian approach to global optimization: theory and applications, Springer Science & Business Media, 37. |
19 | Oh, S., Noh, K., Yoon, D., Seol, S. J., and Byun, J., 2018, Salt delineation from electromagnetic data using convolutional neural networks, IEEE Geosci. Remote Sens. Lett., 16(4), 519-523, doi: 10.1109/LGRS.2018.2877155. DOI |
20 | Nguyen, H. P., Liu, J., and Zio, E., 2020, A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Treestructured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft Comput., 89, 106116, doi:10.1016/j.asoc.2020.106116. DOI |
21 | Park, J., Yoon, D., Seol, S. J., and Byun, J., 2019, Reconstruction of seismic field data with convolutional U-Net considering the optimal training input data, 89th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, doi: 10.1190/segam2019-3216017.1. |
22 | Rashmi, K. V., and Gilad-Bachrach, R., 2015, DART: Dropouts meet Multiple Additive Regression Trees, Artificial Intelligence and Statistics, 489-497. |
23 | Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A., 2018, Hyperband: A novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res., 18, 1-52. |
24 | Snoek, J., Larochelle, H., and Adams, R. P., 2012, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Infor. Process. Syst., 2951-2959. |
25 | Wolpert, D. H., and Macready, W. G., 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1(1), 67-82. DOI |
26 | Wrona, T., Pan, I., Gawthorpe, R. L., and Fossen, H., 2018, Seismic facies analysis using machine learning, Geophysics, 83(5), O83-O95. DOI |