• Title/Summary/Keyword: Auto block bone

Search Result 7, Processing Time 0.023 seconds

THE HISTOLOGIC STUDY OF BONE HEALING AFTER HORIZONTAL RIDGE AUGMENTATION USING AUTO BLOCK BONE GRAFT (자가골 블럭 이식을 이용한 수평골 증강술시 이식골의 치유)

  • Oh, Jae-Kwen;Choi, Byung-Jun;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.207-215
    • /
    • 2009
  • Purpose: The aim of the present study is to evaluate the long term bone healing after horizontal ridge augmentation using auto block bone graft for implant installation timing. Materials and Methods: Five Beagle dogs(which were 14 months old and weighted approximately 10kg). In surgery 1(extraction & bone defect), premolars(P2, P3,P4) were extracted and the buccal bone plate was removed to create a horizontally defected ridge. After three months healing, in surgery 2(ridge augmentation). Auto block bone grafts from the mandibular ramus were used in filling the bone defects were fixed with stabilizing screws. The following fluorochrome labels were given intravenously to the beagle dogs: oxytetracycline 1week after the surgery, alizarin red 4 weeks after the surgery, calcein blue 8 weeks after the surgery. The tissue samples were obtained from the sacrificed dogs of 1, 4, 8, 12, 16 weeks after the surgery. Non-decalcified sections were prepared by resin embedding and microsection to find thickness of $10{\mu}m$ for the histologic examination and analysis. Results: 1. We could achieve the successful reconstruction of the horizontal bone defect by auto block bone graft. The grafted bone block remained stable morohologically after 16 weeks of the surgery. 2. In the histologic view. We observed osteoid tissue from the sample $4^{th}$ week sample and active capillary reconstruction in the grafted bone from the $12^{th}$ week sample. Healing procedures of auto bone grafts were compared to that of the host bone. 3. Bone mineralization could be detected from the $8^{th}$ week sample. 4. Fluorochrome labeling showed active bony changes and formation at the interface of the host bone and the block graft mainly. Bony activation in the grafted bone could be seen from the $4^{th}$ week samples. Conclusions: Active bone formation and remodeling between the grafted bone and host bone can be seen through the revascularization. After the perfect adhesion to host bone, Timing of successful implant installation can be detected through the ideal ridge formation by horizontal ridge augmentation.

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

Clinical Study on the Alveolar Bone Repair Capacity of Dentin Matrix Block (Dentin Matrix Block의 치조골 복원 능력에 관한 임상적 연구)

  • Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • In the oral and maxillofacial area, bone defects are created by various reasons and demand for bone grafts, while dental implant implantation has been increased consistently. To solve these problems, there has been development of autogenous tooth-bone graft material (AutoBT$^{(R)}$, Korea Tooth Bank Co., Korea), and we have collected ground reasons to substitute free autobone graft with this material in clinical use. This autogenous tooth-bone graft material is produced in powder type and block type. Block type is useful in esthetic reconstruction of the defect site and vertical and horizontal augmentation of alveolar bone because this type has high strength value, well maintained shape and is less absorbed. Therefore, the author of this study gained favorable result by grafting the block type autogenous tooth-bone graft material after dental implant implantation on the bone defects of the mandibular molar extraction site. Moreover, the author represents this case with literature review after confirming bone remodeling on the computed tomography image and by histological analysis.

Analysis of Organic Components and Osteoinductivity in Autogenous Tooth Bone Graft Material

  • Kim, Young-Kyun;Lee, Junho;Kim, Kyung-Wook;Um, In-Woong;Murata, Masaru;Ito, Katsutoshi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.353-359
    • /
    • 2013
  • Purpose: Extensive research is actively ongoing for development of an ideal bone substitute that meets the gold standard. Tooth was selected as a donor site for evaluation of potentials in bone substitutes based on its similar chemical compositions to alveolar bone. Previous studies have evaluated inorganic components of autogenous tooth bone graft material (AutoBT) and osteoconductivity. In continuation from the previous studies, the current study was conducted for analysis of organic components and evaluation of osteoinductivity of AutoBT. Methods: Forty-six extracted teeth were collected from actual patients (Korea Tooth Bank, R&D Institute). Extracted teeth were processed into AutoBT and implanted in dorsal subcutaneous muscular tissues of 15 athymic mice. Biopsy samples were harvested at two, five, and eight weeks. The Bradford assay, sodium dodecyl sulphate polyacrylamide gradient gel, and western blotting were performed for investigation of organic contents of AutoBT. Results: Histology analyses showed signs of new bone formation as early as two weeks. Results of the Bradford assay indicated the existence of noncollagenous proteins (NCP). 0.29% (2.89 mg/g) of proteins were extracted by weight in the root portion of AutoBT; 0.02% (0.029 mg/g) and 1.79% (17.93 mg/g) of proteins were measured by weight in crown and block-form of AutoBT, respectively. However, recombinant human bone morphogenetic protein-2 was not observed in AutoBT. Conclusion: Within the limitation of the current study, AutoBT induced new bone formation by NCP embedded in dentin.

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Various autogenous fresh demineralized tooth forms for alveolar socket preservation in anterior tooth extraction sites: a series of 4 cases

  • Kim, Eun-Suk;Lee, In-Kyung;Kang, Ji-Yeon;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.27.1-27.7
    • /
    • 2015
  • The aim of this study was to evaluate the clinical relevance of autogenous fresh demineralized tooth (Auto-FDT) prepared at chairside immediately after extraction for socket preservation. Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. Extraction sockets were filled with these materials and dental implants were installed immediately or after a delay. A panoramic radiograph and a conebeam CT were taken. In two cases, tissue samples were taken for histologic examination. Vertical and horizontal maintenance of alveolar sockets showed some variance depending on the Auto-FDT and barrier membrane types used. Radiographs showed good bony healing. Histologic sections showed that it guided good new bone formation and resorption pattern of the Auto-FDT. This case series shows that Auto-FDT prepared at chairside could be a good material for the preservation of extraction sockets. This study will suggest the possibility of recycling autogenous tooth after immediate extraction.

Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study

  • Lee, Ji-Young;Kim, Young-Kyun;Yi, Yang-Jin;Choi, Joon-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.156-160
    • /
    • 2013
  • Objectives: Interest in bone graft material has increased with regard to restoration in cases of bone defect around the implant. Autogenous tooth bone graft material was developed and commercialized in 2008. In this study, we evaluated the results of vertical and horizontal ridge augmentation with autogenous tooth bone graft material. Materials and Methods: This study targeted patients who had vertical or horizontal ridge augmentation using AutoBT from March 2009 to April 2010. We evaluated the age and gender of the subject patients, implant stability, adjunctive surgery, additional bone graft material and barrier membrane, post-operative complication, implant survival rate, and crestal bone loss. Results: We performed vertical and horizontal ridge augmentation using powder- or block-type autogenous tooth bone graft material, and implant placement was performed on nine patients (male: 7, female: 2). The average age of patients was $49.88{\pm}12.98$ years, and the post-operative follow-up period was $35{\pm}5.31$ months. Post-operative complications included wound dehiscence (one case), hematoma (one case), and implant osseointegration failure (one case; survival rate: 96%); however, there were no complications related to bone graft material, such as infection. Average marginal bone loss after one-year loading was $0.12{\pm}0.19$ mm. Therefore, excellent clinical results can be said to have been obtained. Conclusion: Excellent clinical results can be said to have been obtained with vertical and horizontal ridge augmentation using autogenous tooth bone graft material.