• Title/Summary/Keyword: Auto Regression

Search Result 163, Processing Time 0.019 seconds

Modeling and Comparison for Auto-association using Support Vector Regression (SVR) and Partial Least Square Regression (PLSR) in Online Monitoring Techniques (상시감시기술에서 SVR과 PLSR을 이용한 Auto-association 모델링 및 성능비교)

  • Kim, Seong-Jun;Seo, In-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.483-488
    • /
    • 2010
  • An online monitoring based upon sensor system is essential to assure both efficient operation and safety in the power plant. Of great importance is modeling for auto-association (AA) in online monitoring technique. The objective of auto-associative models lies in predicting true values of plant operation parameters from sensor signals transmitted. This paper presents two AA models using Support Vector Regression (SVR) and Partial Least Square Regression (PLSR). The presented models are useful, in particular, when there are many parameters to monitor in the power plant. Illustrative examples are given by using a real-world plant dataset. AA performances of SVR and PLSR are finally summarized in terms of accuracy and sensitivity. According to our results, SVR shows much higher accuracy and, however, its sensitivity is relatively degraded.

The auto regression model of bus fleet failure number

  • Zhou, Y.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • This paper uses the auto regression model to modeling failure number of a bus fleet. The fitted model can be used to predict the failure number in the future. A numerical example is presented to illustrate the modeling process and the appropriateness of the fitted model. At last, some possible applications of the model are discussed.

  • PDF

Population Projections for Local Governments in Korea: Based on Hamilton-Perry & Auto Regression

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.955-961
    • /
    • 2007
  • Population projections provides useful basic information for the need of economic resources and labor forces. The National Office of Statistics(NSO) presents population projections for the whole country and some of higher level local governments, but not do projections of the lower level local governments. Here are some projection methods as Hamilton-Perry methods and modified auto regression methods, which are compared to cohort method published by NSO in case of Daegu metropolitan city. The simulation results are a little stagnant with modified auto regression, but a little declines are shown with NSO and HP method, for 2010, 2015 and 2020 year, respectively.

  • PDF

Correlation between the Korean pork grade system and the amount of pork primal cut estimated with AutoFom III

  • Park, Yunhwan;Ko, Eunyoung;Park, Kwangwook;Woo, Changhyun;Kim, Jaeyoung;Lee, Sanghun;Park, Sanghun;Kim, Yun-a;Park, Gyutae;Choi, Jungseok
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.135-142
    • /
    • 2022
  • It is impossible to know the amount of pork primal cut by pig carcass grade which is determined only by carcass weight and backfat thickness in the Korean Pig Carcass System. The aim of this study was to investigate the correlation between the pig carcass grade and the amount of pork primal cut estimated with AutoFom III. A total of 419,321 Landrace, Yorkshire, and Duroc (LYD) pigs were graded with the Korean Pig Carcass Grade System. Amounts of belly, neck, loin, tenderloin, spare ribs, shoulder, and ham were estimated with AutoFom III. Regression equations for seven primal cuts according to each grade were derived. There were significant differences among the three carcass grades due to heteroscedasticity variance (p < 0.0001). Three regression equations were derived from AutoFom III estimation of primal cuts according to carcass grades. The coefficient of determination of the regression equation was 0.941 for grade 1+, 0.982 for grade 1, and 0.993 for grade 2. Regression equations obtained from this study are suitable for AutoFom III software, a useful tool for the analysis of each pig carcass grade in the Korean Pig Carcass Grade System. The high reliability of predicting the amount of primal cut with AutoFom III is advantageous for the management of slaughterhouses to optimize their product sorting in Korea.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Integrating Granger Causality and Vector Auto-Regression for Traffic Prediction of Large-Scale WLANs

  • Lu, Zheng;Zhou, Chen;Wu, Jing;Jiang, Hao;Cui, Songyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.136-151
    • /
    • 2016
  • Flexible large-scale WLANs are now widely deployed in crowded and highly mobile places such as campus, airport, shopping mall and company etc. But network management is hard for large-scale WLANs due to highly uneven interference and throughput among links. So the traffic is difficult to predict accurately. In the paper, through analysis of traffic in two real large-scale WLANs, Granger Causality is found in both scenarios. In combination with information entropy, it shows that the traffic prediction of target AP considering Granger Causality can be more predictable than that utilizing target AP alone, or that of considering irrelevant APs. So We develops new method -Granger Causality and Vector Auto-Regression (GCVAR), which takes APs series sharing Granger Causality based on Vector Auto-regression (VAR) into account, to predict the traffic flow in two real scenarios, thus redundant and noise introduced by multivariate time series could be removed. Experiments show that GCVAR is much more effective compared to that of traditional univariate time series (e.g. ARIMA, WARIMA). In particular, GCVAR consumes two orders of magnitude less than that caused by ARIMA/WARIMA.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Customer Churning Forecasting and Strategic Implication in Online Auto Insurance using Decision Tree Algorithms (의사결정나무를 이용한 온라인 자동차 보험 고객 이탈 예측과 전략적 시사점)

  • Lim, Se-Hun;Hur, Yeon
    • Information Systems Review
    • /
    • v.8 no.3
    • /
    • pp.125-134
    • /
    • 2006
  • This article adopts a decision tree algorithm(C5.0) to predict customer churning in online auto insurance environment. Using a sample of on-line auto insurance customers contracts sold between 2003 and 2004, we test how decision tree-based model(C5.0) works on the prediction of customer churning. We compare the result of C5.0 with those of logistic regression model(LRM), multivariate discriminant analysis(MDA) model. The result shows C5.0 outperforms other models in the predictability. Based on the result, this study suggests a way of setting marketing strategy and of developing online auto insurance business.

Kernel Regression with Correlation Coefficient Weighted Distance (상관계수 가중법을 이용한 커널회귀 방법)

  • Shin, Ho-Cheol;Park, Moon-Ghu;Lee, Jae-Yong;You, Skin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.588-590
    • /
    • 2006
  • Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto-associative kernel regression by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression.

  • PDF

Bagged Auto-Associative Kernel Regression-Based Fault Detection and Identification Approach for Steam Boilers in Thermal Power Plants

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1406-1416
    • /
    • 2017
  • In complex and large-scale industries, properly designed fault detection and identification (FDI) systems considerably improve safety, reliability and availability of target processes. In thermal power plants (TPPs), generating units operate under very dangerous conditions; system failures can cause severe loss of life and property. In this paper, we propose a bagged auto-associative kernel regression (AAKR)-based FDI approach for steam boilers in TPPs. AAKR estimates new query vectors by online local modeling, and is suitable for TPPs operating under various load levels. By combining the bagging method, more stable and reliable estimations can be achieved, since the effects of random fluctuations decrease because of ensemble averaging. To validate performance, the proposed method and comparison methods (i.e., a clustering-based method and principal component analysis) are applied to failure data due to water wall tube leakage gathered from a 250 MW coal-fired TPP. Experimental results show that the proposed method fulfills reasonable false alarm rates and, at the same time, achieves better fault detection performance than the comparison methods. After performing fault detection, contribution analysis is carried out to identify fault variables; this helps operators to confirm the types of faults and efficiently take preventive actions.