• 제목/요약/키워드: Au electrode

검색결과 301건 처리시간 0.026초

이동형 핵종 분석 장치용 CZT 반도체 검출기의 완충전극에 대한 연구 (A Study of Interface Layer on CdZnTe Radiation Sensor for Potable Isotope Identifier)

  • 조윤호;박세환;김용균;하장호
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.95-99
    • /
    • 2011
  • The electrical and mechanical properties of electrode for radiation detection are very important. In general, Au electrode and CZT crystal are combined to form ohmic contacts, and the best energy resolution is shown at the Au electrode. The metal contacts are fabricated by electroless deposition method, sputtering deposition method and thermal evaporation method. The electrode fabrication is easy with use of the thermal evaporation method, while an adhesive strength is weak. Thus interface materials such as Ag, Al and Ni were investigated to overcome defects generated by the this method. The thickness of the interface material between the Au electrode and the CZT crystal was 100 Angstroms, the Au electrode with thickness of 400 Angstroms was deposited. The Al+Au electrode is shown that the results of current-voltage and radiation response are similar to results of Au electrode.

Preparation and Characterization of a Surface Renewable Solid State Hg/HgO Reference Electrode Utilizing Gold Amalgam

  • Kim, Won;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.439-442
    • /
    • 2007
  • A solid state Hg(Au)/HgO reference electrode was prepared utilizing gold amalgam solid particles. Solid fine powder of the gold amalgam was prepared by chemical reduction of Au(III) with NaBH4 followed by reduction of Hg(II) in the presence of gold fine particles. The solid content in the suspension of the gold amalgam particles and fine mercury oxide particles in DMF containing PVC was precipitated by the addition of a large amount of water to give solid Hg(Au)/HgO/PVC mixture. After drying, the mixture was pressure-molded to a physically stable Hg(Au)/HgO composite reference electrode material. The electrochemical characteristics of the electrode as a reference electrode were very similar to an ordinary Hg/HgO reference electrode. The electrode material can be molded and fabricated in any desired shape and size. The surface can be renewed by a simple polishing process whenever contaminated or deactivated. The applicability of the electrode in the electrochemical detection of carbohydrates after anion exchange separation was evaluated.

Au/Ag 이중층 전극 구조를 이용한 페로브스카이트 태양전지 (Au/Ag Bilayer Electrode for Perovskite Solar Cells)

  • 이준영;조성진
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.51-55
    • /
    • 2022
  • Generally, Au electrodes are the preferred top metal electrodes in most perovskite solar cells (PSCs) because of their appropriate work function for hole transportation and their resistance to metal-halide formation. However, for the commercialization of PSCs, the development of alternative metal electrodes for Au is essential to decrease their fabrication cost. Ag electrodes are considered one of the most suitable alternatives for Au electrodes because they are relatively cheaper and can provide the necessary stability for oxidation. However, Ag electrodes require an aging-induced recovery process and react with halides from perovskite layers. Herein, we propose a bilayer Au/Ag electrode to overcome the limitations of single Au and Ag metal electrodes. The performance of PSCs based on bilayer electrodes is comparable to that of PSCs with Au electrodes. Furthermore, by using the bilayer electrode, we can eliminate the aging process, normally an essential process for Ag electrodes. This study not only demonstrates an effective method to substitute for expensive Au electrodes but also provides a possibility to overcome the limitations of Ag electrodes.

Al/LB/Al, Au/LB/Au 전극 구조에서 arachidic acid LB막의 전기적 특성에 관한 비교 연구 (A comparative study of electrical properties of arachidic acid LB films in the Al/LB/Al and Au/LB/Au electrode structure)

  • 오세중;김정수
    • 대한전기학회논문지
    • /
    • 제44권10호
    • /
    • pp.1311-1316
    • /
    • 1995
  • The electrical properties of the Langmuir-Blodgett (LB) films layered with arachidic acid were studied at the room temperature. The sample was formed with 2 different structure ; One was Al/LB/Al and the other was Au/LB/Au. The precise structure of Al/LB/Al was considered as Al/Al$_{2}$O$_{3}$/LB/Al, because the natural oxide layer was formed on surface of lower Al electrode. The electrical conductivity of Al/Al$_{2}$O$_{3}$/LB/Al structure was determined the value of 3.5 * 10$^{-14}$ S/cm from the measurement of current-voltage (I-V) characteristics. The sample with the structure of Au/LB/Au was made to eliminate the influence of oxide layer in the electrical properties of the LB films. The short circuit current was observed in this sample from the I-V characteristics. To verify the reason of short circuit current generation, copper decoration method was employed to the 15 layers of LB films deposited on the Al and Au electrode each. The defects were shown on the films deposited with Au electrode. This results means that the defects on the LB films which layered with the Au electrode were contributed to the short circuit current. Several films (15, 31, 51, 71L) were deposited on the Au electrode and measured the size of defects with the copper decoration method. The size of defects becomes smaller as the film layer was increased. We conclude that the existence of defects affects the short circuit current generation.

  • PDF

전극 표면의 거칠기가 펜터신/전극 경계면의 전류-전압 특성에 주는 영향 (Effect of the Surface Roughness of Electrode on the Charge Injection at the Pentacene/Electrode Interface)

  • 김우영;전동렬
    • 한국진공학회지
    • /
    • 제20권2호
    • /
    • pp.93-99
    • /
    • 2011
  • 금속 전극 위에 유기물 채널을 증착하여 만드는 바닥 전극 구조의 유기물 박막 트랜지스터에서 전극 표면이 거친 정도에 따라 전하 주입이 어떻게 달라지는지 조사했다. 금 전극을 실리콘 기판에 증착하고, 가열하여 금 전극 표면을 거칠게 만들었다. 그리고 펜터신과 상부 전극으로 사용할 금 전극을 차례대로 증착하여 금 전극/펜터신/금 전극 구조를 만들었다. 펜터신 증착 초기에는 거친 금 전극 위에서 펜터신 증착핵이 더 많이 보였지만, 막이 두꺼워지면 가열되지 않은 전극과 가열로 거칠어진 전극에서 펜터신 표면 모양에 차이가 거의 없었다. 온도를 바꾸면서 측정한 전류-전압 곡선은 바닥 전극의 표면이 거칠수록 바닥계면의 전위장벽이 높음을 보여주었다. 이 현상은 금속 표면이 거칠수록 일함수가 낮아지며 펜터신과 거친 전극 표면의 경계에 전하 트랩이 더 많기 때문으로 생각된다.

Immobilization of Horseradish Peroxidase to Electrochemically Deposited Gold-Nanoparticles on Glassy Carbon Electrode for Determination of H2O2

  • Ryoo, Hyun-woo;Kim, You-sung;Lee, Jung-hyun;Shin, Woon-sup;Myung, No-seung;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권5호
    • /
    • pp.672-678
    • /
    • 2006
  • A new approach to fabricate an enzyme electrode was described based on the immobilization of horseradish peroxidase (HRP) on dithiobis-N-succinimidyl propionate (DTSP) self-assembled monolayer (SAM) formed on gold-nanoparticles (Au-NPs) which were electrochemically deposited onto glassy carbon electrode (GCE) surface. The overall surface area and average size of Au-NPs could be controlled by varying deposition time and were examined by Field Emission-Scanning Electron Microscope (FE-SEM). The $O_2$ reduction capability of the surface demonstrated that Au-NPs were thermodynamically stable enough to stay on GCE surface. The immobilized HRP electrode based on Au-NPs/GCE presented faster, more stable and sensitive amperometric response in the reduction of hydrogen peroxide than a HRP immobilized on DTSP/gold plate electrode not containing Au-NPs. The effects of operating potential, mediator concentration, and pH of buffer electrolyte solution on the performance of the HRP biosensor were investigated. In the optimized experimental conditions, the HRP immobilized GCE incorporating smaller-sized Au-NPs showed higher electrocatalytic activity due to the high surface area to volume ratio of Au-NPs in the biosensor. The HRP electrode showed a linear response to $H_2O_2$ in the concentration range of 1.4 $\mu$M-3.1 mM. The apparent Michaelis-Menten constant ($K _M\; ^{app}$) determined for the immobilized HRP electrodes showed a trend to be decreased by decreasing size of Au-NPs electrodeposited onto GCE.

Electrocatalysis of Oxygen Reduction by Au Nanoparticles Electrodeposited on Polyoxometalate-Modified Electrode Surfaces

  • Choi, Kyung-Min;Choi, Su-Hee;Kim, Jong-Won
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.75-80
    • /
    • 2009
  • The effect of polyoxometalate monolayers on the electrodeposition of Au nanoparticles (AuNPs) on glassy carbon (GC) surfaces was examined by electrochemical and scanning electron microscope techniques. The presence of $SiMo_{12}O^{4-}_{40}$-layers resulted in average particle sizes of ca. 60 nm, which is larger than AuNPs deposited on bare GC surfaces. AuNPs electrodeposited on $SiMo_{12}O^{4-}_{40}$-modified GC surfaces for 20 s exhibited the best electrocatalytic activity for oxygen reduction. This system exhibited similar or slightly better efficiency for oxygen reduction than a bare Au electrode. Rotating disk electrode experiments were also performed and revealed that the catalytic reduction of oxygen on AuNPs deposited on $SiMo_{12}O^{4-}_{40}$-modified GC electrodes is a two-electron process.

Comparison of characteristics of IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes for organic photovoltaics

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2010
  • We compared the electrical, optical, structural, and interface properties of indium zinc oxide (IZO)-Ag-IZO and IZO-Au-IZO multilayer electrodes deposited by linear facing target sputtering system at room temperature for organic photovoltaics. The IZO-Ag-IZO and IZO-Au-IZO multilayer electrodes show a significant reduction in their sheet resistance (4.15 and 5.49 Ohm/square) and resistivity ($3.9{\times}10^{-5}$ and $5.5{\times}10^{-5}$Ohm-cm) with increasing thickness of the Ag and Au layers, respectively. In spite of its similar electrical properties, the optical transmittance of the IZO-Ag-IZO electrode is much higher than that of the IZO-Au-IZO electrode, due to the more effective antireflection effect of Ag than Au in the visible region. In addition, the Auger electron spectroscopy depth profile results for the IZO/Ag/IZO and IZO/Au/IZO multilayer electrodes showed no interfacial reaction between the IZO layer and Ag or Au layer, due to the low preparation temperature. To investigate in detail the Ag and Au structures on the bottom IZO electrode with increasing thickness, a synchrotron x-ray scattering examination was employed. Moreover, the OSC fabricated on the IZO-Ag-IZO electrode shows a higher power conversion efficiency (3.05%) than the OSC prepared on the IZO-Au-IZO electrode (2.66%), due to its high optical transmittance in the wavelength range of 400-600 nm, which is the absorption wavelength of the P3HT:PCBM active layer.

  • PDF

High Aspect Single Crystalline Au Nanowire Electrode with an Atomically Smooth (111) Surface

  • 강미정;강호석;곽주현;김봉수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.210-210
    • /
    • 2011
  • Ultrasmall electodes are of great importance for basic electrochemical study and applications. We fabricated single crystal (111) Au nanowire (NW) by growth mechanism on substrate without any catalyst. Consequently, these high aspect NW combined with tungsten microwire and the electrodes having NW tip on their end were obtained. These single crystal Au (111) NWs were characterized by electron microscope and electrochemical analysis. We show that precise electrochemical measurement could be possible on these NW electrode by obtaining underpotential deposition (UPD) and ferricyanide CV profiles on the electrode. The immersed depth of electrode into solution was controlled in micrometer scale by piezo-driven manipulator.

  • PDF

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.