Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.2.093

Effect of the Surface Roughness of Electrode on the Charge Injection at the Pentacene/Electrode Interface  

Kim, Woo-Young (Department of Physics Education, Seoul National University)
Jeon, D. (Department of Physics Education, Seoul National University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.2, 2011 , pp. 93-99 More about this Journal
Abstract
We investigated how the surface roughness of electrode affects the charge injection at the pentacene/Au interface. After depositing Au film on the Si substrate by sputtering, we annealed the sample to control the Au surface roughness. Pentacene and Au top electrode were subsequently deposited to complete the sample. The nucleation density of pentacene was slightly higher on the rougher Au electrode, but surface morphologies of thick pentacene films were similar on both the as-prepared and the roughened Au electrodes. The current-voltage curves obtained from the Au/pentacene/Au structure measured as a function of temperature indicated that the interface barrier was higher for the rougher Au bottom-electrode. We propose that the higher barrier was caused by the lower work function of rougher electrode surface and the higher trap density at the interface.
Keywords
Pentacene; Interface barrier height; Surface roughness; Charge injection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Kim and D. Jeon, J. Korean Phys. Soc. 53, 1464 (2008).   과학기술학회마을   DOI
2 J. Cornil, J. Calbert, and J. L. Breadas, J. Am. Chem. Soc. 123, 1250 (2001).   DOI
3 W. Kim and D. Jeon, to be published.
4 Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 12 (1997).   DOI
5 Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, Thin Solid Films 411, 12 (2002).   DOI
6 D. Wohrle and D. Meissner, Adv. Mater. 3, 3 (1991).
7 Y. J. Kim, J. H. Baek, S. I. Kang, and J. S. Choi, J. Korean Vacuum Soc. 13, 3 (2004).
8 L. Briseno, R. J. Tseng, and M. M. Ling, L. Adv. Mater. 18, 2320 (2006).   DOI
9 D. S. Kim, Y. S. Lee, J. H. Park, J. S. Choi, and D. Y. Kang, J. Korean Vacuum Soc. 9, 4 (2004).
10 H. Klauk, D. J. Gundlach, J. A. Nichols, and T. N. Jackson, IEEE Electron Device Lett. 46, 6 (1999).   DOI
11 S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, and T. Zyung, Synthetic Metals 148, 75 (2005).   DOI
12 J. C. Scott, J. Vac. Sci. Technol. 3, A21, (2003).
13 C. H. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, J. Mater. Sci. 35, 5645 (2000).   DOI
14 I. M. Hutching, Tribology (Edward Arnold, London, 1992), pp.323-352
15 Y. Kim and D. Jeon, J. Appl. Phys. 108, 016101 (2010).   DOI
16 Y. -J. Lin, F. -M. Yang, C. -Y. Huang, W. -Y. Chou, J. Chang, and Y. -C. Lien, Appl. Phys. Lett. 91, 092127 (2007).   DOI
17 J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, and K. Cho, Appl. Phys. Lett. 89, 132101 (2006).   DOI
18 A. C. Durr, F. Schreiber, M. Kelsch, H. D. Carstanjen, and H. Dosch, Adv. Mater. 14, 13 (2002).   DOI
19 C. H. Kim and D. Jeon, Appl. Phys. Lett. 95, 153302 (2009).   DOI
20 P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, J. Appl. Phys. 91, 3010 (2002).   DOI   ScienceOn
21 W. Li and D. Y. Li, J. Chem. Phys. 122, 064708 (2005).   DOI
22 S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New Jersey, 1981), pp.155-221
23 S. D. Ha, Y. Qi, and A. Kahn, Chem. Phys. Lett. 495, 212 (2010).   DOI
24 R. Schlaf, P. G. Schroeder, M. W. Nelson, B. A. Parkinson, P. A. Lee, K. W. Nebesny, and N. R. Armstrong, J. Appl. Phys. 86, 1499 (1999).   DOI