• 제목/요약/키워드: Attribute Recognition

검색결과 100건 처리시간 0.03초

이미지 색채 속성을 활용한 감성 정량화 알고리즘 (Color Images Utilizing the Properties Emotional Quantification Algorithm)

  • 이연란
    • 한국콘텐츠학회논문지
    • /
    • 제15권11호
    • /
    • pp.1-9
    • /
    • 2015
  • 감성인식을 규칙적으로 제어하고 변화하려는 감성컴퓨터 연구에 관심이 집중되고 있다. 따라서 색채 감성컴퓨팅의 정량화한 객관적인 평가 방식 적용이 필수적인 상황이다. 이에 본 논문은 이미지 감성인식을 숫자화한 표현방식으로 색채 디지털 감성컴퓨팅 계산을 적용한다. 감성컴퓨팅 연구방식은 이미지에 집중된 감성인식인 색채 속성으로 구성하고, 색채 감성속성은 색상, 명도, 채도로 구분한다. 감성속성의 비중톤 증감에 따른 감성점수와 가중치를 감성식에 적용하여 계산한다. 감성계산식은 쾌정도(X축), 긴장도(Y축)를 계산한다. 그리고 감성좌표에 쾌정도(X축), 긴장도(Y축)의 교차점을 감성점으로 위치한다. 감성좌표는 러셀의 핵심 효과(Core Affect)를 활용한다. 감성점 위치에서 대표감성크기와 감성상관관계를 숫자화하고, 색채 감성컴퓨팅을 통해 정량화한다.

Mahalanobis Taguchi System을 이용한 다변량 시스템의 해석에 관한 연구 (Application of Mahalanobis Taguchi System for Analysis of Multivariate System)

  • 홍정의;김용범
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2005년도 추계학술대회
    • /
    • pp.300-310
    • /
    • 2005
  • Mahalanobis Taguchi System (MTS) is developed by Genishi Taguchi as a part of his quality engineering methodology. The basic idea of Taguchi's quality engineering is looking for the way of effectiveness of analyzing multivariate system. In the MTS, with the standardized variables of healthy normal data, Mahalanobis Distance(MD) calculated and that can be discriminate between normal and abnormal objects. If this discrimination process is successful, next step is optimization which is try to reduce number of attributes by neglecting less effective attributes to MD. Orthogonal Array (OA) and Signal to Noise ratio (S/N) are used to evaluate the amount contribution of each attribute to the MD. Wisconsin Breast Cancer study, from machining learning repository at University of California at Irvine, used for examining the discriminant ability of MTS.

  • PDF

형상 패턴 인식을 이용한 설계자료의 자동 탐색 (An Automated Search for Design Database by Shape Pattern Recognition)

  • 차주헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.670-674
    • /
    • 1996
  • In automated search of a design database to support mechanical design, it is necessaryto recognize a shape pattern which represents a design object. This paper introduces the concept of a surface relation graph (SRG) for recognizing shape patterns from a 3D boundary representation scheme of a solid model(a B-rep model). In SRG, the nodes and arcs correspond to the faces and edges shared by two adjacent faces, respectively. An attribute assigned to an arc is given by an integer which discriminates the relationship between two adjacent faces. The + sign of the integer represents the geometric convexity of the solid, and the -sign the concivity at the shared edge. The input shape is recognized by comparison with the predefined features which are subgraphs of the SRG. A hierarchyof the database for upporting the design is presented. A search for the design database is also discussed. The usefulness of this method is illustrated by some application results.

  • PDF

A Study of Main Contents Extraction from Web News Pages based on XPath Analysis

  • Sun, Bok-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2015
  • Although data on the internet can be used in various fields such as source of data of IR(Information Retrieval), Data mining and knowledge information servece, and contains a lot of unnecessary information. The removal of the unnecessary data is a problem to be solved prior to the study of the knowledge-based information service that is based on the data of the web page, in this paper, we solve the problem through the implementation of XTractor(XPath Extractor). Since XPath is used to navigate the attribute data and the data elements in the XML document, the XPath analysis to be carried out through the XTractor. XTractor Extracts main text by html parsing, XPath grouping and detecting the XPath contains the main data. The result, the recognition and precision rate are showed in 97.9%, 93.9%, except for a few cases in a large amount of experimental data and it was confirmed that it is possible to properly extract the main text of the news.

중학교 영재학생과 예비교사의 영(0)에 관한 인식과 오류 (Conceptual errors related to zero by secondary school gifted student and preservice teachers)

  • 박지현
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제46권4호
    • /
    • pp.357-369
    • /
    • 2007
  • Teachers and students' knowledge of zero was investigated through data collected from 16 preservice secondary mathematics teachers and 20 gifted secondary school students. Results showed that these teachers and students had an inadequate knowledge about zero. They exhibited a reluctance to accept zero as an attribute for classification, confusion as to whether or not zero is a number, and stable patterns of computational error. Although leachers and researchers have long recognized the value of analyzing student errors for diagnosis and remediation, students have not been encouraged to take advantage of errors as learning opportunities in mathematics instruction. The article suggests using errors as springboards for inquiry in action, discusses its potential contributions to mathematics instruction by analyzing students and preservice teachers errors related to zero.

  • PDF

Eyeglass Remover Network based on a Synthetic Image Dataset

  • Kang, Shinjin;Hahn, Teasung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1486-1501
    • /
    • 2021
  • The removal of accessories from the face is one of the essential pre-processing stages in the field of face recognition. However, despite its importance, a robust solution has not yet been provided. This paper proposes a network and dataset construction methodology to remove only the glasses from facial images effectively. To obtain an image with the glasses removed from an image with glasses by the supervised learning method, a network that converts them and a set of paired data for training is required. To this end, we created a large number of synthetic images of glasses being worn using facial attribute transformation networks. We adopted the conditional GAN (cGAN) frameworks for training. The trained network converts the in-the-wild face image with glasses into an image without glasses and operates stably even in situations wherein the faces are of diverse races and ages and having different styles of glasses.

심층신경망 기반의 음성인식을 위한 절충된 특징 정규화 방식 (Compromised feature normalization method for deep neural network based speech recognition)

  • 김민식;김형순
    • 말소리와 음성과학
    • /
    • 제12권3호
    • /
    • pp.65-71
    • /
    • 2020
  • 특징 정규화는 음성 특징 파라미터들의 통계적인 특성의 정규화를 통해 훈련 및 테스트 조건 사이의 환경 불일치의 영향을 감소시키는 방법으로서 기존의 Gaussian mixture model-hidden Markov model(GMM-HMM) 기반의 음성인식 시스템에서 우수한 성능개선을 입증한 바 있다. 하지만 심층신경망(deep neural network, DNN) 기반의 음성인식 시스템에서는 환경 불일치의 영향을 최소화 하는 것이 반드시 최고의 성능 개선으로 연결되지는 않는다. 본 논문에서는 이러한 현상의 원인을 과도한 특징 정규화로 인한 정보손실 때문이라 보고, 음향모델을 훈련 하는데 유용한 정보는 보존하면서 환경 불일치의 영향은 적절히 감소시켜 음성인식 성능을 최대화 하는 특징 정규화 방식이 있는 지 검토해보고자 한다. 이를 위해 평균 정규화(mean normalization, MN)와 평균 및 분산 정규화(mean and variance normalization, MVN)의 절충 방식인 평균 및 지수적 분산 정규화(mean and exponentiated variance normalization, MEVN)를 도입하여, 잡음 및 잔향 환경에서 분산에 대한 정규화의 정도에 따른 DNN 기반의 음성인식 시스템의 성능을 비교한다. 실험 결과, 성능 개선의 폭이 크지는 않으나 분산 정규화의 정도에 따라 MEVN이 MN과 MVN보다 성능이 우수함을 보여준다.

간판의 정보화를 위한 표준 데이터 모델 설계 (Design of Standard Data Model for the Informatization of Signboards)

  • 권상일;김의명
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.197-209
    • /
    • 2020
  • 간판은 점포의 특성에 따라 서로 다른 유형과 크기로 건물에 설치되어있다. 하지만, 지방자치단체에서는 잦은 점포의 개업·폐업과 부족한 관리 인원으로 간판을 관리하는데 어려움을 겪고 있다. 이에 본 연구에서는 간판의 정보를 효율적으로 관리할 수 있도록 표준화하여 관리하는 방안을 제안하였다. 이를 위해, 옥외광고물 관련 시행령의 간판 표시방법을 분석하여 간판 표준 데이터의 속성 요소를 정의하였다. 또한, 선행 연구인 간판 인식 기술을 통해 간판의 물리적 정보를 얻고, 맨눈으로 판독 가능한 정보, 행정안전부의 건물통합정보, 도로명 주소를 통해 간판 표준 데이터의 속성 요소를 정의하였다. 간판 표준 데이터는 호환성을 위해 XML 형식으로 설계하였고, XML의 무결성을 위해 XSD를 정의하여 데이터의 유효성이 검증될 수 있도록 하였다. 마지막으로, 간판의 정보를 공간적 특성에 의해 표준화하기 위하여 국가 공간정보 표준에 따라 데이터 제품 사양과 메타데이터를 정의하였다. 이를 통해 간판의 정보화를 위한 표준 데이터 모델을 설계하였다.

얼굴 마스크 정보를 활용한 다중 속성 얼굴 편집 (Multi-attribute Face Editing using Facial Masks)

  • ;박인규;홍성은
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.619-628
    • /
    • 2022
  • 얼굴 인식 및 얼굴 생성이 다양한 분야에서 큰 주목을 받고 있지만, 얼굴 이미지를 모델 학습에 사용하는데 따른 개인 정보 문제는 최근 큰 문제가 되고 있다. 본 논문에서는 소수의 실제 얼굴 이미지와 안면 마스크 정보로부터 다양한 속성을 가진 얼굴 이미지를 생성함으로써 개인 정보 침해 이슈를 줄일 수 있는 얼굴 편집 네트워크를 제안한다. 다수의 실제 얼굴 영상을 이용하여 얼굴 속성을 학습하는 기존의 방법과 달리 제안하는 방법은 얼굴 분할 마스크와 얼굴 부분 텍스처 영상을 스타일 정보로 사용하여 새로운 얼굴 이미지를 생성한다. 이후 해당 이미지는 각 참조 이미지의 스타일과 위치를 학습하기 위한 훈련에 사용된다. 제안하는 네트워크가 학습되면 소수의 실제 얼굴 영상과 얼굴 분할 정보만을 사용하여 다양한 얼굴 이미지를 생성할 수 있다. 실험에서 제안 기법이 실제 얼굴 이미지를 매우 적게 사용함에도 불구하고 새로운 얼굴을 생성할 뿐만 아니라 얼굴 속성 편집을 지역화하여 수행할 수 있음을 보인다.

이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가 (Performance Comparison of Clustering using Discritization Algorithm)

  • 원재강;이정찬;정용규;이영호
    • 서비스연구
    • /
    • 제3권2호
    • /
    • pp.53-60
    • /
    • 2013
  • 데이터로부터 의미있는 형태의 정보를 얻기 위한 여러 가지 기법들이 개발되어 왔지만, 최근 들어 가장 각광받는 분야 중 하나는 패턴인식과 기계학습 방법이다. 기존의 학습 알고리즘은 대부분 범주 형 속성에 기반 한 규칙 또는 의사 결정 모델을 생성한다. 그런데, 실세계의 데이터는 보통 범주 형 속성 외에도 수치 값을 갖는 속성을 포함하고, 또 많은 경우에 있어 수치 형 속성으로만 구성되기도 한다. 따라서 이러한 경우, 데이터를 학습에 사용하기 위해서는 수치형 속성에 대한 적절한 처리 과정이 필요하다. 본 논문에서는, 수치형 속성의 도메인을 여러 개의 분절된 부분으로 나누어 학습 알고리즘에 사용하는 방법인 이산화 기법을 설명하고 또한 데이터마이닝의 기법으로 사용되는 클러스터링(Clustering)을 사용한다. 클러스터란 대량의 데이터베이스로부터 유사한 레코드 특성을 지닌 작은 그룹으로 여러 개를 분할하는 것으로 패턴 공간에 주어진 유한 개의 패턴들이 서로 가깝게 모여서 무리를 이루고 있는 패턴 집합이다. 그 집합들 중에서 특정한 카테고리를 지정하지 않고 주어진 데이터들에서 어떤 패턴을 추출하여, 비슷한 데이터들을 묶어서 데이터를 분류하는 기법인 클러스터링에 대해 실험한다.

  • PDF