1 |
Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification. The Journal of the Acoustical Society of America, 55(6), 1304-1312.
DOI
|
2 |
De La Torre, A., Peinado, A. M., Segura, J. C., Perez-Cordoba, J. L., Benitez, M. C., & Rubio, A. J. (2005). Histogram equalization of speech representation for robust speech recognition. IEEE Transactions on Speech and Audio Processing, 13(3), 355-366.
DOI
|
3 |
Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., ... Gong, Y. (2013, May). Recent advances in deep learning for speech research at Microsoft. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8604-8608). Vancouver, BC.
|
4 |
Ioffe, S., & Szegedy, C. (2015, July). Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of 32nd International Conference on Machine Learning (Vol. 37, pp. 448-456). Lille, France.
|
5 |
Kinoshita, K., Delcroix, M., Yoshioka, T., Nakatani, T., Habets, E., Haeb-Umbach, R., Leutnant, V., ... & Gannot, S. (2013, October). The REVERB challenge: A common evaluation framework for dereverberation and recognition of reverberant speech. In 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4). New Paltz, NY.
|
6 |
Li, J., Deng, L., Gong, Y., & Haeb-Umbach, R. (2014). An overview of noise-robust automatic speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(4), 745-777.
DOI
|
7 |
Molau, S., Hilger, F., & Ney, H. (2003, April). Feature space normalization in adverse acoustic conditions. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing 2003 Proceedings (ICASSP'03) (Vol. 1, pp. I-I). Hong Kong.
|
8 |
Viikki, O., Bye, D., & Laurila, K. (1998, May). A recursive feature vector normalization approach for robust speech recognition in noise. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Vol. 2, pp. 733-736). Seattle, WA.
|
9 |
Pearce, D., & Picone, J. (2002). Aurora working group: DSR front end LVCSR evaluation AU/384/02 (Technical report). Mississippi State, MS; Institute for Signal and Information Processing at Mississippi State University.
|
10 |
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., ... Vesely, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding (No. CONF). Hawaii, HI.
|
11 |
Yu, D., Seltzer, M. L., Li, J., Huang, J. T., & Seide, F. (2013, March). Feature learning in deep neural networks - studies on speech recognition tasks. Proceedings of International Conference on Learning Representations(ICLR). Scottsdale, AZ.
|