• Title/Summary/Keyword: Attitude and Heading Reference System

Search Result 50, Processing Time 0.04 seconds

A Study on Attitude Heading Reference System Based Micro Machined Electro Mechanical System for Small Military Unmanned Underwater Vehicle

  • Hwang, A-Rom;Yoon, Seon-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.522-526
    • /
    • 2015
  • Generally, underwater unmanned vehicle have adopted an inertial navigation system (INS), dead reckoning (DR), acoustic navigation and geophysical navigation techniques as the navigation method because GPS does not work in deep underwater environment. Even if the tactical inertial sensor can provide very detail measurement during long operation time, it is not suitable to use the tactical inertial sensor for small size and low cost UUV because the tactical inertial sensor is expensive and large. One alternative to INS is attitude heading reference system (AHRS) with the micro-machined electro mechanical system (MEMS) inertial sensor because of MEMS inertial sensor's small size and low power requirement. A cost effective and small size attitude heading reference system (AHRS) which incorporates measurements from 3-axis micro-machined electro mechanical system (MEMS) gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for UUV. The AHRS based MEMS overcome many problems that have inhibited the adoption of inertial system for small UUV such as cost, size and power consumption. Several evaluation experiments were carried out for the validation of the developed AHRS's function and these experiments results are presented. Experiments results prove the fact that the developed MEMS AHRS satisfied the required specification.

Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

  • Kim, Jong-Myeong;Mok, Sung-Hoon;Leeghim, Henzeh;Lee, Chang-Yull
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 2017
  • In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.

The Study for attitude determination and heading production using AHRS (AHRS을 이용한 자세결정과 Heading 산출을 위한 연구)

  • 백기석;박운용;차성렬;홍순헌
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

Sampled-data Fuzzy Observer Design for an Attitude and Heading Reference System and Its Experimental Validation

  • Kim, Han Sol;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2399-2410
    • /
    • 2017
  • In this paper, a linear matrix inequality-based sampled-data fuzzy observer design method is proposed based on the exact discretization approach. In the proposed design technique, a numerically relaxed observer design condition is obtained by using the discrete-time fuzzy Lyapunov function. Unlike the existing studies, the designed observer is robust to the uncertain premise variable because the fuzzy observer is designed under the imperfect premise matching condition, in which the membership functions of the system and observer are mismatched. In addition, we apply the proposed method to the state estimation problem of the attitude and heading reference system (AHRS). To do this, we derive a Takagi-Sugeno fuzzy model for the AHRS system, and validate the proposed method through the hardware experiment.

Vibration-Robust Adaptive Attitude Reference System Using Sequential Measurement Noise Covariance (진동환경에 강인한 순차적 측정 오차 공분산값을 이용한 적응 자세 결정)

  • Kim, Jongmyeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • A new technique for Attitude & Heading Reference System (AHRS) by using sequential measurement noise covariance (SMNC) is addressed in a vibration environments in this paper. In particular, a low-cost inertial measurement unit in general diverges in the acceleration phase or vibrating environments due to inherent properties of gravity and acceleration. In this paper, by considering current and prior measurements to estimate actual attitudes and headings in a local frame, the proposed technique overcomes these problems efficiently. Finally, the performance of the suggested approach is verified by numerical simulations.

Design of Attitude Heading Reference System using Gyroscope Free Inertial Measurement Unit (Gyroscope Free 관성 측정 장치를 이용한Attitude Heading Reference System 설계)

  • Jae Hoon Son;Sang Yoon Lee;Hyo Seok Kim;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.237-244
    • /
    • 2024
  • An Attitude and Heading Reference System (AHRS) provides the attitude of a vehicle with a constant velocity using an Inertial Measurement Unit (IMU) and a magnetometer. In this case, in order to avoid the disadvantage of a gyroscope, an AHRS using a Gyro-Free IMU (GF-IMU) that is composed of only accelerometers may be considered instead of the gyroscopes. In this paper, a design method of an AHRS using a GF-IMU is proposed. The proposed AHRS consists of roll and pitch calculation, yaw calculation, angular acceleration and angular velocity calculation, attitude calculation, and a Kalman filter. In particular, since the angular velocity cannot be measured from a gyroscope, the angular acceleration is obtained from the accelerometer output, and the angular velocity is calculated by integrating it. In order to show the usefulness of the proposed method, a performance evaluation was carried out. The performance evaluation results show that the attitude estimation performance of the proposed AHRS is similar to that of the conventional AHRS.

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.

Performance Improvement of an INS by using a Magnetometer with Pedestrian Dynamic Constraints

  • Woyano, Feyissa;Park, Aangjoon;Lee, Soyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This paper proposes to improve the performance of a strap down inertial navigation system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an attitude and heading reference system. To track position accurately and for attitude estimations, considering different dynamic constraints, magnetic measurement and a zero velocity update technique is used. A conventional strap down method based on integrating angular rate to determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-term orientation errors. To eliminate this accumulative error, and thus, use the navigation system for a long-duration mission, a hybrid configuration by integrating a miniature micro electromechanical system (MEMS)-based attitude and heading detector with the conventional navigation system is proposed in this paper. The attitude and heading detector is composed of three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute algorithm based on gravity and Earth's magnetic field, rather than an integral algorithm, the attitude detector can obtain an absolute attitude and heading estimation without drift errors, so it can be used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both formula analysis and from test results) that the accumulative errors are effectively eliminated via this hybrid scheme.

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF